PC17 Doc. 16.1.3

CONVENCIÓN SOBRE EL COMERCIO INTERNACIONAL DE ESPECIES AMENAZADAS DE FAUNA Y FLORA SILVESTRES

Decimoséptima reunión del Comité de Flora Ginebra (Suiza), 15-19 de abril de 2008

Cuestiones sobre la madera

Caoba

CONVERSIÓN VOLUMÉTRICA DE LOS ÁRBOLES EN PIE EN MADERA ASERRADA DE CAOBA EXPORTABLE

- 1. Este documento ha sido preparado por la Presidenta del Comité de Flora.
- Dentro del Plan de Trabajo 2007 y en el marco de los compromisos del DR-CAFTA (Tratado de Libre Comercio República Dominicana – Centroamérica) de la Comisión Centroamericana de Ambiente y Desarrollo (CCAD), se realizó un Taller Regional Sobre la Implementación de CITES: Mejorar el Comercio Internacional de la Caoba del Atlántico (Swietenia macrophylla), (Nicaragua, Agosto de 2007).
- El taller recibió el apoyo del Banco Mundial y los organizadores de la CCAD propusieron intercambiar experiencias entre los especialistas de los países con el fin de desarrollar instrumentos prácticos que contribuyan a mejorar el cumplimiento de CITES.
- 4. En el taller participaron representantes de Belice, Costa Rica, Guatemala, Honduras, Nicaragua, Panamá, El Salvador, República Dominicana, México, en su calidad de Presidencia del Grupo de trabajo de la Caoba, la Presidenta del Comité de Flora, la Secretaría CITES y representantes de diferentes ONGs.
- 5. Un resultado de este taller fue un trabajo sobre la metodología a seguir para elaborar tablas nacionales de conversión volumétrica de madera rolliza en pie a madera aserrada calidad exportación. Los puntos esenciales del mismo figuran en el Anexo a este documento. El trabajo completo en se incluye en el documento PC17 Inf. 3 (únicamente en español e inglés).
- 6. La Presidenta del Comité de Flora agradecen a CCAD y al Banco Mundial la remisión del trabajo para ser discutido en la presente reunión.
- 7. Se solicita al Comité de Flora que:
 - a) estudie, contraste y debata el contenido del Anexo;
 - b) emita conclusiones sobre el mismo e incorpore las modificaciones contrastadas pertinentes, si fueren necesarias;
 - decida cómo proceder con respecto a la metodología sobre conversión volumétrica de los árboles en pie en madera aserrada de caoba exportable; y
 - d) aconseje a los países del área de distribución sobre la metodología a seguir, habida cuenta el Anexo 3, párrafo 1. b), de las Decisiones en vigor tras la CoP14.

PC17 Doc. 16.1.3 Anexo

TABLA DE CONVERSIÓN PARA EL CÁLCULO DE VOLÚMENES DE MADERA ASERRADA - CAOBA (*SWIETENIA MACROPHYLLA*). METODOLOGÍA PARA ELABORAR TABLAS NACIONALES DE CONVERSIÓN VOLUMÉTRICA DE MADERA ROLLIZA EN PIE A MADERA ASERRADA CALIDAD EXPORTACIÓN. KOMETTER, R. Y E. MARAVI (2007).

1. Cálculo de los volúmenes de madera exportable de caoba

Uno de los mecanismos frecuentemente usados que permiten la legalización de caoba extraída ilegalmente, es el uso inadecuado de los factores de conversión entre los volúmenes de madera en pie y los volúmenes exportables de madera aserrada. En otras palabras, el cálculo de los volúmenes para obtener los permisos CITES para exportación son significativamente mayores a los que efectivamente producen los árboles legalmente autorizados. Por tal razón, para mejorar el cumplimiento de las normas establecidas por el convenio CITES se hace necesario revisar y armonizar los factores de conversión de madera en pie y madera tipo exportación de caoba.

Por ejemplo en algunos países productores, para efectos de obtener los permisos de exportación se asume que el 100% del volumen de madera de un árbol en pie es exportable. En otros países este factor varía alrededor del 50% al 60% del volumen total en pie. Excepcionalmente en algunos de los países se han realizado esfuerzos para determinar los factores de conversión a lo largo de la cadena de valor. Por ejemplo, usando bases de datos existentes, efectuando cálculos dasométricos obtenidos durante la extracción de caoba en Perú y Brasil e incorporando ajustes estadísticos, se ha demostrado que los volúmenes de caoba aserrada de calidad exportación es aproximadamente el 20% del volumen total de madera en pie. En consecuencia, se estima que entre el 30 y el 80% de la madera que actualmente se exporta usando los factores de conversión significativamente mayores al 20% tienen una alta probabilidad que sea de origen ilegal. Bajo estas consideraciones esta madera estaría en la categoría de origen controversial. Esta situación es sumamente grave para la sostenibilidad de la especie, para el buen cumplimiento de la legislación nacional e internacional, la buena gobernabilidad del sector forestal en los países productores y para el desarrollo de la industria forestal.

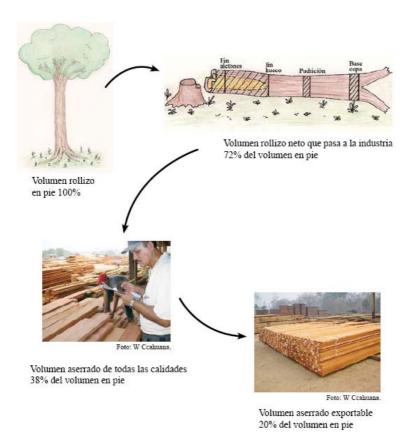


Figura 1. Porcentaje de la relación volumétrica entre el volumen de madera en el bosque y el de exportación.

2 Opciones prácticas y efectivas

Considerando lo descrito anteriormente, es importante determinar con la mayor precisión posible los volúmenes reales de madera aserrada exportable producidos por los árboles de caoba. Esto se logra mediante el uso sencillo de principios de dasometría usando una tabla de conversión volumétrica. A partir de la medición del diámetro a la altura del pecho (dap) del árbol en pie y mediante el uso de estas tablas se pueden calcular los volúmenes exportables de caoba.

Se parte del principio de que en el caso de la caoba existe una alta relación entre dap y el volumen de madera aserrada. Esta característica hace posible la elaboración de una tabla de volúmenes muy práctica mediante la cual, midiendo el dap del árbol en pie, se puede calcular inmediatamente el volumen de madera aserrada exportable que se obtendrá de un determinado árbol.

Caoba: Volumen de madera en el árbol en pie a exportable

3. Elaboración de la tabla volumétrica nacional

Objetivo

Contribuir con las autoridades CITES y las agencias de administración forestal de los países productores de la región en la elaboración de tablas nacionales de conversión volumétrica (TNCV) de caoba mediante el uso de la presente metodología. Mediante estas tablas volumétricas de uso sencillo y de alta precisión, se logrará prevenir la exportación de volúmenes mayores de madera aserrada de caoba del que efectivamente pueden producir los árboles legalmente autorizados. Una vez aprobadas por las autoridades competentes de los países, estas tablas nacionales serán utilizadas por usuarios, operadores, dueños de bosques, auditores, autoridades de las administraciones forestales y las autoridades CITES.

Para elaborar la tabla volumétrica nacional se deberá seguir un proceso riguroso usando una metodología cuya propuesta se presenta en forma esquemática a continuación:

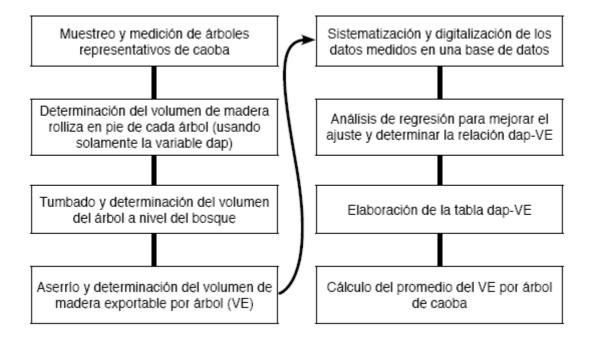


Figura 2. Desarrollo de la metodología.

Paso I:

Muestreo, medición y determinación del volumen de madera del árbol en pie

- 1. Selección de los árboles de caoba a ser medidos para elaborar la tabla de conversión volumétrica. Se deben seleccionar árboles de caoba al azar de todos los diámetros y dimensiones de tal forma que se cubra en lo posible la variabilidad en diámetros, alturas y formas a nivel nacional. Se recomienda utilizar una muestra de por lo menos 100 árboles, que en lo posible contengan proporcionalmente árboles de las diferentes clases diamétricas (CD), entre 8 y 10 CD, cada 10 cm a partir del diámetro mínimo de corta. Esto se podrá implementar aprovechando las actividades de extracción forestal legalmente autorizadas (concesionarios, comunidades y predios). Sin embargo, se sugiere que el número de árboles a muestrear sea determinado estadísticamente considerando las condiciones de cada país.
- 2. Toma de la información de cada uno de los árboles seleccionados que permita calcular el volumen real de estos. Usando una cinta diamétrica se debe medir el diámetro a 1,30 m del suelo (dap) y la altura comercial (HC) cuando el árbol está en pie. Es importante indicar que esta es la definición convencional, en la práctica el técnico de campo usará su buen criterio considerando las características morfológicas de cada árbol.
- 3. Estimado del volumen de madera en pie a partir del dap.

Paso II:

Determinación del volumen en el bosque

Una vez tumbado el árbol, se deben efectuar las mediciones necesarias para determinar el volumen real a partir de las mediciones en base a las siguientes indicaciones:

- Diámetro del tocón
- Diámetro a la altura del tocón y cada dos metros (d₁, d₂, d₃, ...)
- Diámetro en el punto del corte del fuste tumbado

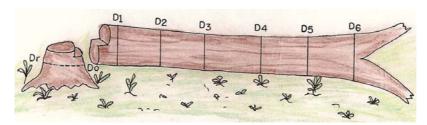


Figura 3. Medición del diámetro de la troza.

4. Cálculo del volumen real de cada uno de los árboles de caoba muestreados. Se calcula el volumen para cada porción medida usando la fórmula de Smalian y luego se suman estos volúmenes para tener el volumen total de cada árbol.

$$V= \begin{array}{cc} Pi & D_1+D_2 \\ & --- & [------] L \\ 4 & 2 \end{array}$$

 $V = Volumen (m^3); Pi = 3.1416; D1 = Diámetro mayor (m); D2 = Diámetro menor (m) y L = Largo de troza (m)$

5. Medición y deducción de los defectos. En el árbol tumbado y trozado se debe medir la magnitud (tamaño) de los defectos (huecos y pudriciones) calculando el volumen total de estos. Es necesario indicar la importancia de calcular apropiadamente los defectos (huecos y pudriciones) de manera que estos sean deducidos apropiadamente en el cálculo de los volúmenes. Además de los datos e índices

de rendimiento elaborados por A. C. Sánchez y W. Ccahuana en Perú, es importante también destacar los valiosos aportes científicos de J. Grogan y J. Schulze en la determinación de los índices de defectos. Estos elementos y estudios realizados en Brasil han contribuido de manera importante en el diseño de esta metodología.

6. Eliminación de las secciones no utilizables y medición de las trozas de cada uno de los árboles de caoba que se transportará a la industria. Una vez que se eliminen las partes no utilizables y se definan las trozas que irán a la industria, estas deben ser medidas para determinar el volumen que se trasladará desde el bosque.

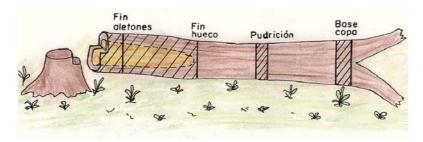


Figura 4. Deducción del volumen por defectos de la troza.

7. Cálculo del volumen de cada árbol de caoba que será transportado a la industria. El volumen de cada uno de los árboles es la suma de los volúmenes de las trozas de un mismo árbol que van a la industria.

Paso III:

Aserrío y determinación de la madera exportable

 Aserrío de la madera, clasificación por calidad y medición de las tablas según calidad por cada árbol de caoba aserrado.

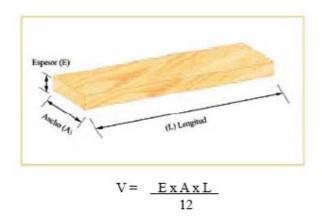


Figura 5. Cálculo del volumen de la madera aserrada por calidades donde V = Volumen de la madera aserrada (pies cúbicos); E = Espesor de la tabla (pulgadas); A = Ancho de la tabla (pulgadas); L = Longitud de la tabla (pies).

Para el caso de la elaboración de la tabla volumétrica mediante la presente metodología es importante prestar especial cuidado a la determinación del volumen de la madera de calidad exportación.

Paso IV:

Sistematización de la información obtenida en el bosque e industria

 Ordenamiento y sistematización de la información en una base de datos simple. Toda la información obtenida de los árboles seleccionados tanto en el bosque como en la industria se ordena en una base de datos de acuerdo a la tabla que se presenta a continuación. dap: Diámetro a 1,30 m del suelo medido en cm cuando el árbol está en pie. Como se indicó anteriormente esta es la definición convencional del dap; en la práctica el técnico de campo usará su buen criterio considerando las características morfológicas del árbol.

HC: altura comercial calculada hasta la base de la copa, medida en metros cuando el árbol está en pie.

Volumen rollizo en pie: es el volumen de madera total estimado para el árbol en pie y calculado a partir del dap, la HC y el factor 0,65 (factor de ajuste por cono truncado). El volumen se expresa en m³. El factor 0,65 se usó en el caso del análisis de Perú. Cada país podrá definir su factor de ajuste.

Volumen rollizo apeado: es el volumen total (m³) de madera que tiene el árbol que ha sido cortado, antes de ser trozado y trasladado a la industria.

Volumen rollizo neto: es el volumen (m³) de las trozas que pasan a la industria.

Volumen aserrado: es todo el volumen (m³) de madera aserrada que se obtiene de las trozas del árbol que ingresa a la industria.

Volumen aserrado exportable (VE): es el volumen de madera aserrada de calidad de exportación que se obtiene del árbol de caoba.

Factor de conversión volumétrica (FCVE): es la relación entre el volumen aserrado exportable sobre el volumen rollizo en pie.

Es pertinente recomendar que el ordenamiento y sistematización de los datos lo efectúen por lo menos dos miembros del equipo de trabajo encargado de la elaboración de las tablas nacionales. De esta forma se asegura mayor calidad en el ordenamiento y sistematización de la información.

Para efectos de ilustración, con un ejemplo real y práctico, se elaboró la siguiente tabla en la que se utilizan los datos de una población de 255 árboles de caoba. Los árboles documentados y medidos por Sánchez, A.C. (10) estaban distribuidos y seleccionados para su aprovechamiento en una concesión forestal en Perú. Asimismo se utilizaron los índices de defectos determinados por Grogan, J. y Schulze, M. (6) en Brasil y los índices de rendimiento determinados por W. Ccahuana (3) en Perú.

PC17 Doc. 16.1.3 - p. 6

Cuadro 1. Altura comercial y cálculos de volúmenes. (*) VE = Volumen rollizo en pie (4) x FCVE (9). Los datos completos de este cuadro se presentan en forma detallada en el Anexo 2.

1	2	3	4	5	6	7	8	9
No.	dap (cm)	HC (m)	Volumen rollizo en pie (m³)	Volumen rollizo apeado (m³)	Volumen rollizo neto (m³)	Volumen aserrado (m³)	Volumen aserrado exportable (VE) (m³) (*)	Factor de conversión volumétrica (FCV E)
1	75	12	3.446	3.951	3.6769	1.6381	0.8191	0.2377
2	75	14	4.020	3.933	3.7051	1.6868	0.8434	0.2098
	-							
52	87	14	5.410	5.728	5.0903	2.3576	1.1788	0.2179
53	87	11	4.250	4.474	3.8343	1.8282	0.9141	0.2151
81	93	16	7.065	7.318	6.1967	2.9462	1.4731	0.2085
82	93	13	5.740	5.354	4.8061	2.3138	1.1569	0.2015
215	130	18	15.530	14.423	9.5138	5.4393	2.7196	0.1751
216	130	19	16.392	15.453	10.1351	5.8658	2.9329	0.1789
251	151	20	23.280	20.655	11.4272	6.9976	3.4988	0.1503
252	154	21	25.425	22.425	12.2670	7.4861	3.7430	0.1472
253	156	14	17.393	17.499	8.9404	5.6400	2.8200	0.1621
254	168	16	23.054	21.017	10.4485	6.8601	3.4301	0.1488
255	169	12	17.497	15.386	8.0448	5.2025	2.6013	0.1487

Paso V:

Análisis de regresión y elaboración de la tabla de volumen de madera aserrada exportable de caoba a partir del dap

El análisis de regresión es una técnica estadística que reduce los márgenes de error en los cálculos para establecer una relación entre una variable cuantitativa llamada variable dependiente (en este caso volumen exportable) y una o más variables independientes, llamadas predictoras (en este caso el dap). El análisis de regresión es muy útil en la elaboración de tablas de volumen, principalmente porque el volumen del árbol es una variable difícil de medir mediante los métodos convencionales. Sin embargo, este puede ser calculado a partir de una variable fácil de medir como el dap y su relación con el volumen usando el análisis de regresión. Este análisis se podrá realizar mediante el uso de programas disponibles en las computadoras convencionales como Microsoft Excel ó MINITAB para lo cual será necesario:

10. Graficar el análisis de la correlación del dap y el volumen de madera exportable de caoba para determinar sus tendencias y seleccionar el modelo (fórmula) que mejor se ajuste a esta correlación para su comprobación. En la siguiente figura se presentan los niveles de la dispersión de los volúmenes aserrados exportables de los 255 árboles de caoba muestreados.

PC17 Doc. 16.1.3 - p. 7

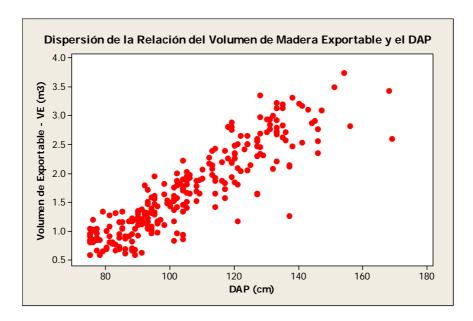


Figura 6. Dispersión de la relación del volumen de madera exportable y el dap.

Como se puede observar, la distribución de los volúmenes aserrados exportables por árbol de caoba a partir del dap, muestra una marcada tendencia creciente. Es decir a un aumento en el dap se observa automáticamente un aumento en el volumen, motivo por el cual se probará el modelo recomendado por Mayhew, J.E. & Newton (8). Este es un modelo de una sola entrada, donde sólo participa el dap en el cálculo del volumen, en base a lo demostrado por muchos estudios y corroborado por Grogan, J. y Schulze, M. (6).

Para el análisis de regresión se trabajó con el siguiente modelo:

$$Y = a + bdap + cdap^2$$
 [Mayhew, J.E. & Newton (8)]

Donde a, b y c son coeficientes

11. Determinación de los coeficientes de las ecuaciones a través del análisis de regresión por los mínimos cuadrados

Ecuación elaborada: $VE = -2.4403 + 0.046383*dap - 0.00006461*dap^2$

- 12. Análisis de la bondad del ajuste de la ecuación a través de valores y pruebas (usando Excel ó MINITAB). Para determinar el grado de ajuste de la ecuación a los datos disponibles se utilizan los siguientes valores y pruebas:
 - R= Coeficiente de correlación, permite medir el grado de asociación entre dos variables. Si este valor se acerca a 1, significa que hay un alto grado de asociación entre el dap y el VE y que la ecuación representa muy bien esta asociación.
 - R² = Coeficiente de determinación, es una medida de la bondad del ajuste de la ecuación usada. Si se acerca a 1, significa que el dap es una buena variable para estimar el VE utilizando la ecuación seleccionada.

Prueba de F, permite determinar si la variable estimada con la ecuación (VE) varía indistintamente o esta influenciada por la variable independiente (dap). Si F calculado es mayor al F tabular a un 99% de confianza, demuestra que hay una alta influencia de la variabilidad del dap sobre la variabilidad del VE.

Análisis de residuales, permite observar la distribución de las diferencias entre los valores estimados con la ecuación y los valores reales (medidos). Cuanto más se acerquen estas diferencias a O significa que los valores estimados se acercan bastante a los valores reales, lo que demuestra una buena estimación de la ecuación.

R	R ²	F calculado	Dispersión Residuos
0.897	0.806	522.15	Buena distribución

F tabular al 99% = 4.69

Considerando que **R** se acerca a 1 se puede afirmar que hay una alta correlación entre el dap y el volumen exportable. Es decir que una variación en el dap significa un cambio automático en el VE. También se observa que **R**² se acerca a 1 por lo que se puede afirmar que la ecuación determinada expresa adecuadamente la correlación entre el dap y el VE. Es decir, que el cálculo del VE a partir del dap es altamente confiable.

Si F calculado es mayor al F tabular a un 99% de confianza significa que la variabilidad del VE está fuertemente influenciada por la variabilidad del dap.

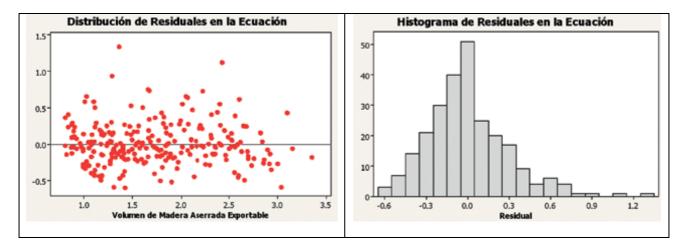


Figura 7. Distribución de residuales.

Residuo = VE real - VE estimado con la ecuación

En la distribución de los valores residuales se observa una buena distribución alrededor del cero. En el cuadro del histograma se observa que los niveles más altos igualmente se concentran alrededor del cero, lo que demuestra que existe una buena estimación de los valores reales a partir de la ecuación calculada. Para observar objetivamente el grado de ajuste de los valores estimados mediante la ecuación con los valores reales, se grafican en forma conjunta los dos grupos de valores.

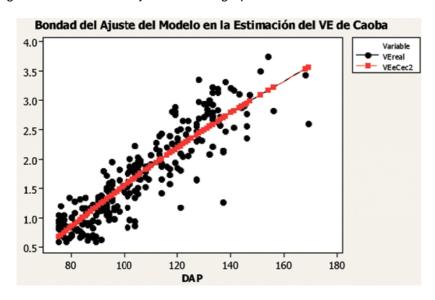


Figura 8. Bondad en el ajuste del modelo en la estimación del volumen de exportación.

En la figura 8 se observa de manera objetiva que hay un buen ajuste entre los valores de la estimación con la ecuación y los valores reales (medidos). A partir de los resultados de estas pruebas se puede concluir que hay un buen ajuste de la ecuación a los valores reales y por lo tanto se recomienda su uso en la estimación del volumen de madera aserrada exportable a partir del dap. Consecuentemente, teniendo en cuenta estos resultados del análisis de regresión, para efectos de la determinación de los volúmenes aserrados exportables, se usará esta ecuación y se construye la tabla a partir de ella.

13. Desarrollo de la tabla de volumen de madera exportable de caoba a partir del dap utilizando la ecuación seleccionada (*).

 $VE = -2.4403 + 0.046383*dap - 0.00006461*dap^{2}$

Cuadro 2. Tabla volumétrica en base al dap.

dap (cm)	Volumen de madera aserrado exportable por árbol de caoba (m³)
75	0.675
80	0.857
85	1.035
90	1.211
95	1.383
100	1.552
105	1.718
110	1.880
115	2.039
120	2.195
125	2.348
130	2.498
135	2.644
140	2.787
145	2.927
150	3.063
155	3.197
160	3.327

El detalle del cálculo de estos resultados se podrá observar en la tabla completa de volumen incluida en el Anexo 1.

- (*) La selección de la ecuación a utilizarse dependerá de los resultados del análisis de cada país.
- 14. Cálculo del volumen de madera aserrada exportable promedio por árbol de caoba. Se obtiene a partir de los volúmenes exportables promedios, calculados en el paso anterior por clase diamétrica y el promedio ponderado de acuerdo a la proporción que corresponde a la clase diamétrica de los árboles seleccionados.

Cuadro 3. Tabla volumétrica por clases diamétricas.

Clases diamétricas (CD) (cm)	% de la población en la CD (tomado del promedio de POAs)	Volumen de madera exportable promedio de caoba por CD (m³)
75 – 84	6.51	0.857
85 – 94	14.54	1.211
95 – 104	16.03	1.552
105 – 114	11.46	1.880
115 – 124	8.89	2.195
125 – 134	13.15	2.498
135 – 144	10.06	2.787
145 – 154	5.07	3.063
155 - +	14.28	3.327
Promedio ponderado		2.131

Como se puede observar en base al análisis de los datos obtenidos de una muestra total de 255 árboles el volumen de madera exportable promedio por árbol de caoba es de 2.131 m³. La obtención de este promedio nacional permitirá a los usuarios tener una idea inmediata sobre el origen y legalidad de los volúmenes exportables de caoba aserrada a nivel de unidad de manejo y a nivel nacional a partir del número de árboles de caoba verificados en el bosque.

4. Bibliografía

- Alder, D. 1980. Estimation des volumen et accroissement des peuplements forestiers, avec reference particuliere aux forets tropicales, vol 2 etude et previsión de la production. FAO. Roma. 229 p.
- Cailliez, F. 1980. Estimación del volumen forestal y predicción del rendimiento, con referencia especial a los trópicos. Vol. 1 estimación del volumen. FAO. Roma. 92 p.
- Ccahuana, W. 2007. Estudio de rendimiento y tiempos en el proceso de aserrío de trozas de *Swietenia* macrophylla king con un aserradero de cinta vertical, en la provincia de Tahuamanu. Tesis de ingeniero. Universidad Nacional de San Antonio Abad del Cusco. Facultad de Ciencias Forestales y Medio Ambiente. Carrera Profesional de Ingeniería Forestal. 46 p.
- Chuquicaja, C. 1987. Factor de conversión en aserrio para las especies Tornillo y Moena d la zona de Chanchamayo. Tesis de Ingeniero. UNALM. Lima. Perú. 121 p.
- Forestal International Limited. 1975. Estudio de volumen y defecto. En Inventario forestal del bosque nacional Alejandro Von Humboldt, Región de Pucallpa, Perú. FAO. Roma. 11 p.
- Grogan, J.; Schulze, M. 2007. Estimating the number of trees and forest area necessary to supply internationally traded volumen of tropical timber species: the case big-leaf mahogany (*Swietenia macrophylla*) in Amazonia. 35 pp. (Presentado para su publicación en la revista Oryx).
- Hin Keong, C. 2006. El papel Actual y Potencial de CITES en la Lucha Contra la Tala llegal. Traffic Internacional. 47 p.
- Mayhew, J.E. & Newton, A.C. 1998 The Silviculture of Mahogany. CABI Publishing, New York, NY, USA.
- Minitab Inc. 2003. MINITAB Statistical Software, Release 14 for Windows, State College, Pennsylvania. MINITAB®, is a registered trademark of Minitab Inc.
- Sánchez A.C. 1985. Elaboración de una tabla de volumen standard para (caoba) *Swietenia macrohylla* G. King en San Martin Saposoa. UNAP. Iquitos. 110 p.
- Tolmos, R. 2001. Determinación del coeficiente de conversión de madera rolliza a madera aserrada con sierra cinta de la especie Shihuahuaco. Tesis de ingeniero. UNALM. Lima. Perú. 93 p.

Anexo 1

TABLA DE VOLUMEN DE MADERA ASERRADA EXPORTABLE DE CAOBA A PARTIR DEL DAP

 $VE = -2.4403 + 0.046383*dap - 0.00006461*dap^{2}$

dap (cm)	Volumen de madera aserrado exportable por árbol de caoba (VE) (m³)	dap (cm)	Volumen de madera aserrado exportable por árbol de caoba (VE) (m³)
75	0.675	118	2.133
76	0.712	119	2.164
77	0.748	120	2.195
78	0.784	121	2.226
79	0.821	122	2.257
80	0.857	123	2.287
81	0.893	124	2.318
82	0.929	125	2.348
83	0.964	126	2.378
84	1.000	127	2.408
85	1.035	128	2.438
86	1.071	129	2.468
87	1.106	130	2.498
88	1.141	131	2.527
89	1.176	132	2.556
90	1.211	133	2.586
91	1.246	134	2.615
92	1.28	135	2.644
93	1.315	136	2.673
94	1.349	137	2.702
95	1.383	138	2.730
96	1.417	139	2.759
97	1.451	140	2.787
98	1.485	141	2.815
99	1.518	142	2.843
100	1.552	143	2.871
101	1.585	144	2.899
102	1.619	145	2.927
103	1.652	146	2.954
104	1.685	147	2.982
105	1.718	148	3.009
106	1.750	149	3.036
107	1.783	150	3.063
108	1.815	151	3.09
109	1.848	152	3.117
110	1.880	153	3.144
111	1.912	154	3.170
112	1.944	155	3.197
113	1.976	156	3.223
114	2.008	157	3.249
115	2.039	158	3.275
116	2.071	159	3.301
117	2.102	160	3.327

Anexo 2

DATOS BÁSICOS DE CAOBA PARA LA ELABORACIÓN DE LA TABLA DE VOLUMEN DE MADERA ASERRADA EXPORTABLE

Esta tabla se construyó en base a datos de campo de árboles de caoba aprovechados en Perú, tomados por A.C. Sánchez (10), índices de defectos determinados por J. Grogan (6) e índices de rendimiento determinados por W. Ccahuana (3)

1	2	3	4	5	6	7	8	9
No.	dap (cm)	HF (m)	Volumen rollizo en pie (m³)	Volumen rollizo apeado (m³)	Volumen rollizo neto (m³)	Volumen aserrado (m³)	Volumen aserrado exportable (m³)	Factor de conversión volumétrica
1	75	12	3.446	3.951	3.6769	1.6381	0.8191	0.2377
2	75	14	4.020	3.933	3.7051	1.6868	0.8434	0.2098
3	75	16	4.595	4.586	4.5146	2.0786	1.0393	0.2262
4	75	14	4.020	4.377	4.3427	1.9042	0.9521	0.2368
5	75	15	4.307	4.215	4.1433	1.9129	0.9564	0.2220
6	75	13	3.733	4.244	4.1382	1.8349	0.9175	0.2458
7	75	8	2.297	2.803	2.6099	1.1907	0.5953	0.2592
8	75	12	3.446	3.896	3.6684	1.6224	0.8112	0.2354
9	76	13	3.833	3.702	3.6851	1.6243	0.8122	0.2119
10	76	12	3.538	3.955	3.7396	1.6888	0.8444	0.2386
11	76	12	3.538	4.033	3.7564	1.6976	0.8488	0.2399
12	76	15	4.423	4.750	4.4787	2.0437	1.0219	0.2310
13	76	16.5	4.865	4.727	4.6740	2.0259	1.0129	0.2082
14	76	17	5.013	5.362	5.3475	2.4060	1.2030	0.2400
15	76	15	4.423	4.644	4.5529	2.0709	1.0355	0.2341
16	76	15	4.423	4.788	4.5079	2.0410	1.0205	0.2307
17	77	12	3.632	4.203	3.9093	1.7683	0.8842	0.2434
18	77	12	3.632	4.148	3.8983	1.6999	0.8499	0.2340
19	77	15	4.540	4.779	4.7485	2.0966	1.0483	0.2309
20	77	9	2.724	3.022	2.9531	1.3343	0.6671	0.2449
21	77	13	3.935	4.485	4.1751	1.9214	0.9607	0.2442
22	78	8	2.485	2.724	2.5598	1.1751	0.5875	0.2365
23	78	13	4.038	3.840	3.7723	1.7060	0.8530	0.2113
24	79	8	2.549	3.069	3.0491	1.3162	0.6581	0.2582
25	79	18	5.735	6.015	5.9069	2.6924	1.3462	0.2347
26	80	10	3.267	3.508	3.2597	1.4471	0.7236	0.2215
27	80	13	4.247	4.826	4.5260	2.0041	1.0020	0.2359
28	80	9	2.941	3.264	3.0702	1.3775	0.6887	0.2342
29	81	13	4.354	4.155	4.1207	1.8254	0.9127	0.2096
30	81	16	5.359	6.108	5.6781	2.5541	1.2771	0.2383
31	81	14	4.689	5.259	4.9201	2.1708	1.0854	0.2315
32	81	11	3.684	3.932	3.6945	1.6149	0.8075	0.2192
33	82	11	3.776	3.610	3.5614	1.5702	0.7851	0.2079
34	82	10	3.433	3.736	3.7090	1.6174	0.8087	0.2356
35	83	9	3.165	2.989	2.9483	1.3268	0.6634	0.2096
36	83	16	5.627	6.175	6.0588	2.6280	1.3140	0.2335
37	83	10	3.517	3.812	3.5528	1.5381	0.7690	0.2187

1	2	3	4	5	6	7	8	9
N o.	dap (cm)	HF (m)	Volumen rollizo en pie (m³)	Volumen rollizo apeado (m³)	Volumen rollizo neto (m³)	Volumen aserrado (m³)	Volumen aserrado exportable (m³)	Factor de conversión volumétrica
38	84	8	2.882	3.270	3.0812	1.3863	0.6932	0.2405
39	84	8	2.882	3.209	3.1907	1.4057	0.7029	0.2439
40	84	11	3.962	4.605	4.2940	1.8972	0.9486	0.2394
41	84	14	5.043	5.702	5.3368	2.3216	1.1608	0.2302
42	84	10	3.602	4.244	3.9888	1.7741	0.8871	0.2463
43	84	9.5	3.422	3.374	3.3109	1.4549	0.7274	0.2126
44	85	13	4.795	5.165	4.3944	2.1114	1.0557	0.2202
45	85	17	6.270	6.158	5.5475	2.6777	1.3388	0.2135
46	85	14	5.164	5.826	4.9836	2.3145	1.1572	0.2241
47	85	13	4.795	5.062	4.4662	2.0845	1.0422	0.2174
48	86	9	3.398	3.469	2.9846	1.3827	0.6913	0.2034
49	86	12	4.531	4.219	3.8720	1.8287	0.9143	0.2018
50	86	8	3.021	2.994	2.6287	1.2423	0.6212	0.2056
51	86	10	3.776	4.449	3.7946	1.7559	0.8780	0.2325
52	87	14	5.410	5.728	5.0903	2.3576	1.1788	0.2179
53	87	11	4.250	4.474	3.8343	1.8282	0.9141	0.2151
54	88	11	4.349	4.517	4.1027	1.9075	0.9538	0.2193
55	88	8.5	3.360	3.179	2.8245	1.3396	0.6698	0.1993
56	88	8	3.163	3.511	2.9993	1.4087	0.7043	0.2227
57	88	10	3.953	3.846	3.4614	1.6424	0.8212	0.2077
58	88	14	5.535	5.799	4.9696	2.3398	1.1699	0.2114
59	88	14	5.535	5.963	5.3113	2.4549	1.2275	0.2218
60	89	8	3.235	3.215	2.8239	1.3530	0.6765	0.2091
61	89	7	2.831	2.923	2.4757	1.1695	0.5847	0.2066
62	89	12	4.852	4.784	4.3489	2.0791	1.0395	0.2142
63	89	14	5.661	5.916	5.0703	2.3883	1.1941	0.2109
64	90	14	5.789	6.157	5.4031	2.5138	1.2569	0.2171
65	90	12	4.962	5.199	4.6675	2.2166	1.1083	0.2234
66	90	15	6.203	6.758	5.7432	2.7046	1.3523	0.2180
67	90	15	6.203	6.053	5.5156	2.6617	1.3309	0.2146
68	90	14	5.789	6.007	5.1543	2.4397	1.2199	0.2107
69	90	13	5.376	5.725	5.1217	2.3893	1.1947	0.2222
70	90	15.5	6.409	6.233	5.4732	2.6068	1.3034	0.2034
71	90	10	4.135	4.583	3.9092	1.8409	0.9205	0.2226
72	91	13	5.496	5.178	4.6658	2.2418	1.1209	0.2040
73	91	13	5.496	5.954	5.1084	2.4121	1.2061	0.2195
74	91	7	2.959	2.860	2.6221	1.2453	0.6226	0.2104
75	91	15	6.341	6.554	5.7996	2.7677	1.3839	0.2182
76	92	14	6.049	6.785	5.7459	2.6618	1.3309	0.2200
77	92	19	8.210	8.683	7.6203	3.5990	1.7995	0.2192
78	92	12	5.185	5.644	4.8768	2.3048	1.1524	0.2223
79	92	14	6.049	6.274	5.5701	2.5757	1.2879	0.2129
80	93	11	4.857	5.167	4.5642	2.1307	1.0654	0.2193
81	93	16	7.065	7.318	6.1967	2.9462	1.4731	0.2085
82	93	13	5.740	5.354	4.8061	2.3138	1.1569	0.2015

1	2	3	4	5	6	7	8	9
No.	dap (cm)	HF (m)	Volumen rollizo en pie (m³)	Volumen rollizo apeado (m³)	Volumen rollizo neto (m³)	Volumen aserrado (m³)	Volumen aserrado exportable (m³)	Factor de conversión volumétrica
83	93	14	6.182	6.456	5.5470	2.6396	1.3198	0.2135
84	93	11	4.857	5.153	4.5208	2.0943	1.0472	0.2156
85	93	17	7.506	7.182	6.5063	3.0114	1.5057	0.2006
86	93	12	5.298	5.778	4.8945	2.3399	1.1699	0.2208
87	93	13	5.740	5.952	5.1981	2.4588	1.2294	0.2142
88	93	18	7.948	8.483	7.2768	3.4406	1.7203	0.2165
89	94	10	4.511	4.716	4.0988	1.9294	0.9647	0.2139
90	94	11	4.962	4.794	4.2403	2.0356	1.0178	0.2051
91	94	14	6.315	6.907	5.8699	2.7778	1.3889	0.2199
92	94	16	7.217	7.578	6.8565	3.1756	1.5878	0.2200
93	94	11	4.962	5.222	4.4889	2.0932	1.0466	0.2109
94	94	13	5.864	6.269	5.5480	2.6377	1.3189	0.2249
95	94	11	4.962	5.313	4.6613	2.1618	1.0809	0.2178
96	95	16.5	7.602	7.345	6.2084	3.1115	1.5557	0.2046
97	95	14.5	6.681	6.462	5.2979	2.5694	1.2847	0.1923
98	95	15	6.911	7.221	5.9749	2.9386	1.4693	0.2126
99	95	14	6.450	6.424	5.3719	2.6521	1.3261	0.2056
100	95	17.5	8.063	7.854	6.4392	3.2204	1.6102	0.1997
101	95	20	9.215	9.647	7.8805	3.8882	1.9441	0.2110
102	96	12	5.646	5.769	4.8141	2.3520	1.1760	0.2083
103	96	12	5.646	5.675	4.5652	2.2941	1.1471	0.2032
104	96	10	4.705	4.671	3.9179	1.9463	0.9731	0.2068
105	96	12	5.646	5.675	4.6896	2.2764	1.1382	0.2016
106	96	15	7.057	7.419	5.8297	2.8678	1.4339	0.2032
107	97	12	5.764	6.143	4.8372	2.3851	1.1926	0.2069
108	98	11	5.393	5.949	4.5950	2.2232	1.1116	0.2061
109	98	18	8.825	8.941	7.4711	3.6423	1.8211	0.2064
110	98	16	7.845	8.502	6.5926	3.2784	1.6392	0.2090
111	99	15	7.505	8.160	6.2438	3.0715	1.5357	0.2046
112	99	14	7.005	7.237	5.9068	2.9621	1.4811	0.2114
113	100	14	7.147	7.759	5.9452	2.9945	1.4973	0.2095
114	100	13	6.637	7.318	5.9037	2.8657	1.4329	0.2159
115	101	14	7.291	7.945	6.2292	3.0381	1.5191	0.2084
116	101	11	5.728	6.196	4.7409	2.3456	1.1728	0.2047
117	101	13	6.770	6.667	5.4463	2.7438	1.3719	0.2026
118	101	8	4.166	4.271	3.4378	1.6608	0.8304	0.1993
119	101	15	7.812	8.005	6.5335	3.2291	1.6145	0.2067
120	101	15	7.812	7.946	6.4733	3.1341	1.5670	0.2006
121	101	16	8.332	8.998	7.0450	3.5070	1.7535	0.2104
122	102	9	4.780	5.171	3.9678	1.9281	0.9640	0.2017
123	102	18	9.560	10.524	8.2784	4.0132	2.0066	0.2099
124	102	13	6.905	7.428	5.6837	2.8485	1.4242	0.2063
125	102	17	9.029	9.465	7.7042	3.7365	1.8682	0.2069
126	102	16	8.498	8.895	7.1694	3.6013	1.8007	0.2119
127	102	14	7.436	8.294	6.5050	3.1433	1.5716	0.2114

1	2	3	4	5	6	7	8	9
N o.	dap (cm)	HF (m)	Volumen rollizo en pie (m³)	Volumen rollizo apeado (m³)	Volumen rollizo neto (m³)	Volumen aserrado (m³)	Volumen aserrado exportable (m³)	Factor de conversión volumétrica
128	103	16	8.666	8.937	7.2942	3.6480	1.8240	0.2105
129	104	8	4.417	4.439	3.7526	1.8909	0.9454	0.2140
130	104	13	7.178	7.393	5.9667	2.9151	1.4576	0.2031
131	104	19	10.491	11.057	9.0564	4.4560	2.2280	0.2124
132	104	15	8.282	8.629	7.2155	3.5086	1.7543	0.2118
133	104	16	8.835	9.015	7.1931	3.5672	1.7836	0.2019
134	104	16	8.835	8.826	6.9354	3.4845	1.7423	0.1972
135	104	12	6.626	6.751	5.4205	2.6728	1.3364	0.2017
136	104	16	8.835	8.258	6.8834	3.4027	1.7014	0.1926
137	104	17	9.387	8.974	7.0526	3.4531	1.7265	0.1839
138	104	7	3.865	4.361	3.4148	1.7110	0.8555	0.2213
139	104	18	9.939	9.280	7.6888	3.8041	1.9021	0.1914
140	105	13	7.317	7.111	5.2823	2.8137	1.4068	0.1923
141	105	16	9.005	9.180	6.7653	3.6171	1.8086	0.2008
142	105	18	10.131	10.290	7.7697	4.0530	2.0265	0.2000
143	105	18	10.131	9.907	7.3539	3.9079	1.9539	0.1929
144	105	17	9.568	9.648	7.1111	3.7341	1.8670	0.1951
145	105	14	7.880	7.597	5.6832	3.0093	1.5047	0.1910
146	105	15	8.443	8.574	6.2775	3.3432	1.6716	0.1980
147	106	17	9.751	10.165	7.5935	3.9603	1.9801	0.2031
148	106	17	9.751	10.149	7.4658	3.8490	1.9245	0.1974
149	106	15	8.604	8.539	6.1823	3.2964	1.6482	0.1916
150	108	13	7.741	7.845	5.8149	3.0418	1.5209	0.1965
151	108	16	9.527	9.766	7.4052	3.7353	1.8677	0.1960
152	108	15	8.932	9.243	7.0028	3.5522	1.7761	0.1989
153	108	14	8.336	8.675	6.5555	3.3886	1.6943	0.2032
154	109	14	8.491	8.633	6.1673	3.2929	1.6464	0.1939
155	109	16	9.705	9.808	7.0256	3.7592	1.8796	0.1937
156	110	18	11.119	11.047	8.1841	4.1317	2.0658	0.1858
157	110	16	9.883	10.407	7.4999	3.8138	1.9069	0.1929
158	112	18	11.527	11.336	8.3875	4.3471	2.1735	0.1886
159	112	18	11.527	12.051	8.6745	4.5405	2.2702	0.1970
160	113	15	9.778	10.287	7.5791	3.9599	1.9800	0.2025
161	113	16	10.430	10.798	8.0041	4.2837	2.1418	0.2054
162	113	18	11.734	11.957	9.0531	4.7747	2.3874	0.2035
163	113	16	10.430	10.870	8.1805	4.1616	2.0808	0.1995
164	114	11	7.298	7.630	5.5179	2.8459	1.4229	0.1950
165	114	14	9.288	9.464	7.0120	3.7535	1.8767	0.2021
166	114	13	8.625	8.557	6.3046	3.3106	1.6553	0.1919
167	114	15	9.952	10.023	7.6340	3.8508	1.9254	0.1935
168	114	19	12.606	12.680	9.3820	4.8723	2.4362	0.1933
169	116	16.5	11.335	11.598	8.1364	4.3938	2.1969	0.1938
170	116	15	10.304	9.605	6.7931	3.7347	1.8674	0.1812
171	117	18	12.579	12.200	8.6150	4.7807	2.3903	0.1900
172	117	13	9.085	8.797	6.2598	3.4678	1.7339	0.1909

1	2	3	4	5	6	7	8	9
No.	dap (cm)	HF (m)	Volumen rollizo en pie (m³)	Volumen rollizo apeado (m³)	Volumen rollizo neto (m³)	Volumen aserrado (m³)	Volumen aserrado exportable (m³)	Factor de conversión volumétrica
173	117	14	9.784	9.562	6.7276	3.6711	1.8356	0.1876
174	117	12	8.386	8.211	5.8332	3.1378	1.5689	0.1871
175	118	16.5	11.729	11.952	8.2227	4.5285	2.2642	0.1930
176	118	20.5	14.572	14.873	10.2327	5.5999	2.8000	0.1921
177	119	14	10.121	10.630	7.0940	3.8719	1.9359	0.1913
178	119	19	13.736	13.003	10.2777	5.6127	2.8064	0.2043
179	119	19.5	14.097	14.430	10.0912	5.5140	2.7570	0.1956
180	119	20	14.459	13.709	10.4793	5.7723	2.8862	0.1996
181	119	17	12.290	12.010	8.1405	4.3832	2.1916	0.1783
182	119	16	11.567	10.711	7.8847	4.3754	2.1877	0.1891
183	120	17	12.497	12.531	8.5716	4.7089	2.3545	0.1884
184	120	18	13.232	13.656	9.0857	4.9723	2.4861	0.1879
185	120	16	11.762	12.133	8.4227	4.5174	2.2587	0.1920
186	120	18	13.232	12.769	8.9897	4.9584	2.4792	0.1874
187	120	14	10.292	9.997	6.7584	3.6936	1.8468	0.1794
188	120	16.5	12.130	12.375	8.7131	4.6686	2.3343	0.1924
189	121	13	9.717	9.751	6.5244	3.6192	1.8096	0.1862
190	121	8	5.979	6.265	4.2580	2.3571	1.1785	0.1971
191	121	15	11.212	10.991	7.8260	4.1966	2.0983	0.1872
192	121	18	13.454	13.719	9.3560	5.0210	2.5105	0.1866
193	122	14	10.638	11.151	7.4024	4.0736	2.0368	0.1915
194	122	19	14.437	13.915	9.6542	5.2996	2.6498	0.1835
195	123	17	13.130	12.808	9.0156	4.8440	2.4220	0.1845
196	124	14	10.989	11.006	7.5595	4.1061	2.0530	0.1868
197	124	16.5	12.952	13.253	9.1615	5.0205	2.5102	0.1938
198	124	18	14.129	13.556	9.5334	5.2893	2.6447	0.1872
199	124	17	13.344	13.923	9.3842	5.0272	2.5136	0.1884
200	125	15	11.965	12.017	7.6361	4.3000	2.1500	0.1797
201	127	11.5	9.469	8.666	5.6375	3.3142	1.6571	0.1750
202	127	16	13.174	12.426	7.8699	4.5886	2.2943	0.1742
203	127	11	9.057	9.453	5.7892	3.2740	1.6370	0.1807
204	127	18	14.821	14.137	8.9848	5.1236	2.5618	0.1728
205	127	17	13.998	13.588	8.8216	4.9305	2.4653	0.1761
206	127	18	14.821	13.619	8.7833	5.1507	2.5754	0.1738
207	127	18	14.821	13.907	8.8271	5.1867	2.5933	0.1750
208	127	18	14.821	14.990	9.1875	5.1206	2.5603	0.1727
209	128	18	15.056	14.925	9.4023	5.3735	2.6868	0.1785
210	128	17	14.219	13.387	8.7706	4.9140	2.4570	0.1728
211	128	22	18.401	16.648	11.6344	6.7005	3.3503	0.1821
212	128	16	13.383	13.483	8.2957	4.6827	2.3414	0.1750
213	128	20	16.728	15.389	10.3069	5.9490	2.9745	0.1778
214	129	15	12.743	13.537	8.2970	4.6373	2.3187	0.1820
215	130	18	15.530	14.423	9.5138	5.4393	2.7196	0.1751
216	130	19	16.392	15.453	10.1351	5.8658	2.9329	0.1789
217	131	19	16.646	15.129	9.9688	5.8596	2.9298	0.1760

1	2	3	4	5	6	7	8	9
No.	dap (cm)	HF (m)	Volumen rollizo en pie (m³)	Volumen rollizo apeado (m³)	Volumen rollizo neto (m³)	Volumen aserrado (m³)	Volumen aserrado exportable (m³)	Factor de conversión volumétrica
218	131	17.5	15.331	15.595	10.0327	5.6896	2.8448	0.1856
219	131	18	15.770	15.593	9.9326	5.5348	2.7674	0.1755
220	132	14	12.453	11.089	7.1708	4.1494	2.0747	0.1666
221	132	19	16.901	15.848	10.3249	6.0071	3.0035	0.1777
222	133	14	12.643	12.026	7.6077	4.4158	2.2079	0.1746
223	133	20	18.061	18.255	11.1943	6.2496	3.1248	0.1730
224	133	17	15.352	15.880	9.7330	5.5932	2.7966	0.1822
225	133	20	18.061	17.636	11.5542	6.4530	3.2265	0.1786
226	133	17	15.352	14.586	9.4698	5.4529	2.7265	0.1776
227	133	17	15.352	14.818	9.4220	5.3443	2.6721	0.1741
228	133	17	15.352	15.531	9.6604	5.4399	2.7200	0.1772
229	133	17.5	15.803	16.039	10.1138	5.8396	2.9198	0.1848
230	135	18	16.747	15.480	9.5418	5.6637	2.8319	0.1691
231	135	17	15.817	14.560	8.8127	5.2614	2.6307	0.1663
232	135	20	18.608	17.323	10.6386	6.4018	3.2009	0.1720
233	135	20	18.608	17.105	10.4297	6.2673	3.1337	0.1684
234	136	15	14.164	14.547	8.6398	5.1573	2.5787	0.1821
235	136	17	16.052	15.234	9.0994	5.4422	2.7211	0.1695
236	137	14	13.414	11.933	7.1538	4.2876	2.1438	0.1598
237	137	14	13.414	12.326	7.1724	4.2498	2.1249	0.1584
238	137	7.5	7.186	7.364	4.2155	2.5389	1.2695	0.1766
239	138	20	19.444	18.390	11.0805	6.6142	3.3071	0.1701
240	138	15	14.583	13.446	8.2730	4.9305	2.4653	0.1690
241	140	19	19.011	17.443	10.5345	6.4122	3.2061	0.1686
242	141	19	19.284	18.149	10.5668	6.3498	3.1749	0.1646
243	141	14.5	14.717	14.923	8.5593	5.0733	2.5366	0.1724
244	143	17.5	18.269	18.773	10.5488	6.2160	3.1080	0.1701
245	144	16	16.937	16.070	9.7446	5.7318	2.8659	0.1692
246	145	17	18.247	17.103	9.3907	5.8185	2.9093	0.1594
247	146	14	15.235	14.557	7.5712	4.6935	2.3468	0.1540
248	146	15	16.323	15.749	8.3567	5.1296	2.5648	0.1571
249	146	15.5	16.867	17.348	9.0423	5.5334	2.7667	0.1640
250	147	18	19.857	18.366	9.8217	6.1722	3.0861	0.1554
251	151	20	23.280	20.655	11.4272	6.9976	3.4988	0.1503
252	154	21	25.425	22.425	12.2670	7.4861	3.7430	0.1472
253	156	14	17.393	17.499	8.9404	5.6400	2.8200	0.1621
254	168	16	23.054	21.017	10.4485	6.8601	3.4301	0.1488
255	169	12	17.497	15.386	8.0448	5.2025	2.6013	0.1487