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ABSTRACT
Archival geolocators have transformed the study of small, migratory organisms but analysis of data from these devices 
requires bias correction because tags are only recovered from individuals that survive and are re-captured at their tag-
ging location. We show that integrating geolocator recovery data and mark–resight data enables unbiased estimates of 
both migratory connectivity between breeding and nonbreeding populations and region-specific survival probabilities 
for wintering locations. Using simulations, we first demonstrate that an integrated Bayesian model returns unbiased es-
timates of transition probabilities between seasonal ranges. We also used simulations to determine how different sam-
pling designs influence the estimability of transition probabilities. We then parameterized the model with tracking data 
and mark–resight data from declining Painted Bunting (Passerina ciris) populations breeding in the eastern United States, 
hypothesized to be threatened by the illegal pet trade in parts of their Caribbean, nonbreeding range. Consistent with 
this hypothesis, we found that male buntings wintering in Cuba were 20% less likely to return to the breeding grounds 
than birds wintering elsewhere in their range. Improving inferences from archival tags through proper data collection 
and further development of integrated models will advance our understanding of the full annual cycle ecology of mi-
gratory species.

Keywords: archival tracking tags, integrated Bayesian models, mark–resight data, migratory connectivity, Painted 
Bunting, Passerina ciris, survival bias

La integración de datos de rastreo y de avistamientos repetidos permite inferencias no sesgadas sobre la 
conectividad migratoria y la supervivencia en el rango de invierno a partir de marcadores de registro

RESUMEN
Los geo-localizadores de registro han transformado el estudio de los organismos migratorios pequeños, pero el análisis 
de los datos provenientes de estos aparatos requiere correcciones de sesgo debido a que los marcadores son solo 
recuperados de individuos que sobreviven y que son recapturados en su ubicación de marcado. Mostramos que la 
integración de datos de geo-localizadores recuperados y de marcas-reavistamientos permiten estimaciones no sesgadas 

LAY SUMMARY

•	 Recent advances in the miniaturization of tracking devices have transformed the ability of researchers to track small migra-
tory birds throughout their journeys. However, the small size of these devices prevents transmitting the data to satellites, so 
birds must be recaptured to obtain the tracking data.

•	 Because tracking data can only be obtained from individuals that survive and return the following year, these data 
underestimate how many birds migrate to regions where they are less likely to survive, which may lead to incorrect 
conclusions about what areas are most important to a species.

•	 We show that more accurate estimates of migratory patterns can be obtained by combining the data from the tracking 
tags with information about the survival of individuals within each population.

•	 Application of this method to tracking data from Painted Buntings revealed that males wintering in Cuba experience 
nearly 15–20% lower survival than males wintering elsewhere in the range.
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tanto de conectividad migratoria entre poblaciones reproductivas y no reproductivas, como de probabilidades de 
supervivencia específicas por región para los lugares de invernada. Usando simulaciones, primero demostramos que 
un modelo bayesiano integrado genera estimaciones no sesgadas de probabilidades de transición entre los rangos 
estacionales. También usamos simulaciones para determinar cómo diferentes diseños de muestreo influencian la 
capacidad de estimar las probabilidades de transición. Luego, parametrizamos el modelo con datos de rastreo y datos 
de marca-reavistamiento de las poblaciones en disminución de Passerina ciris que se reproducen en el este de Estados 
Unidos, hipotéticamente amenazadas por el comercio ilegal de mascotas en partes de su rango no reproductivo del 
Caribe. De modo consistente con esta hipótesis, encontramos que los machos de P. ciris que invernan en Cuba tuvieron 
un 20% menos de probabilidad de regresar a los sitios reproductivos que las aves que invernaron en otros lugares de 
su rango. Mejorar las inferencias a partir de los marcadores de registro mediante la colecta adecuada de datos y el 
subsecuente desarrollo de modelos integrados permitirá avanzar nuestro entendimiento sobre la ecología del ciclo 
completo anual de las especies migratorias.

Palabras clave: conectividad migratoria, datos de marca-reavistamiento, marcadores de rastreo y registro, modelos 
bayesianos integrados, Passerina ciris, sesgo de supervivencia

INTRODUCTION

Rapid advances and miniaturization of tracking technology 
in recent decades have allowed researchers to quantify sea-
sonal migrations of many terrestrial and aquatic species 
(Eckert and Stewart 2001, Domeier and Nasby-Lucas 2013, 
Jiménez López et al. 2019), to discover previously unknown 
migration routes (Sawyer et  al. 2009, Smith et  al. 2014, 
Naidoo et al. 2016), and to identify critical migration stop-
over and nonbreeding areas (Richter and Cumming 2008, 
Delmore et al. 2012, Cooper et al. 2019). This information 
is essential for understanding population dynamics, dis-
ease transmission, range shifts, resource use, and man-
agement of vulnerable migratory species or populations. 
Relatively large species (>60 g body mass) can be tracked 
with geolocation tags capable of transmitting location data 
to satellites (Scarpignato et al. 2016), but mapping seasonal 
movements and winter quarters for the great majority of 
migratory vertebrate species requires miniature archival 
geolocators (hereafter “geolocators”) that store location 
data internally and must be recovered from surviving in-
dividuals (Fraser et  al. 2012, Hallworth and Marra 2015, 
Peterson et al. 2015).

Although geolocators have been revolutionary for 
the study of small migratory organisms (McKinnon and 
Love 2018), interpretation of migration patterns from 
the observed data must be done with care. In particular, 
because geolocators do not transmit data, observed mi-
gration data can only come from individuals that survive 
multiple migratory and stationary periods, return to their 
tagging location, and are recaptured. Individuals that do 
not survive at any other stage of the annual cycle will not 
be represented. This form of survivorship bias is problem-
atic for inferring migration patterns if certain migration 
routes have lower survival than others. For example, if the 
nonbreeding range of a migratory species consists of two 
regions, one with high survival and one with low survival, 
individuals that migrate to the low-survival region will be 
less likely to return to their breeding site than individuals 

from the high-survival region. Hence, individuals from the 
low-survival region will be under-represented in the ob-
served data relative to their actual proportion. Estimates 
of transition probabilities (i.e. the probability that an in-
dividual from breeding site i migrates to nonbreeding re-
gion j) will therefore be under-estimated for low-survival 
regions, and over-estimated for high-survival regions (see 
Supplemental Material Appendix S1 for additional proof). 
Despite the potential for this bias to influence inferences 
from archival geolocators, a cursory review of the litera-
ture suggests that quantifying patterns of migratory con-
nectivity based on the interpretation of raw, observed 
geolocator data is standard practice (McKinnon and Love 
2018, Lisovski et al. 2020).

An analogous bias must be accounted for when 
estimating movement rates from band recoveries or 
re-sights with geographic variation in recovery/re-sight 
probabilities (Brownie et  al. 1993, Nichols et  al. 1995, 
Cohen et al. 2014). Although a long history of model devel-
opment is available to estimate these observation probabil-
ities in dead–recovery and live-re-sight studies (reviewed 
by Korner-Nievergelt et  al. 2010), we lack an equivalent 
approach to account for the effects of survivorship bias 
in movement studies based on data from geolocators. 
Survivorship bias is an inevitable outcome of using arch-
ival geolocators when survival differs among migration 
routes and is therefore likely to be pervasive in the pub-
lished literature.

Here we present an integrated model that accounts for 
survivorship bias when estimating migratory transitions 
from geolocators. Our approach is similar to the integrated 
model proposed by Korner-Nievergelt et al. (2017) in that 
it formally combines a geolocator recovery model with 
capture–recapture data in a single, unified model of migra-
tory connectivity. Our approach extends this framework 
by recognizing that the average survival probability of a 
migratory population can be parameterized as the mar-
ginal survival probability across all possible nonbreeding 
regions. In other words, the survival probability measured 
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by capture–mark–recapture (CMR) methods is the average 
survival of each nonbreeding region weighted by the prob-
ability that an individual migrates to each region. As a re-
sult, individuals migrating to low-survival regions result 
in both missing geolocator recoveries and lower survival 
probability for the population as a whole. An additional 
benefit of this integrated model is that it provides esti-
mates of regional survival probabilities without the need 
to collect additional data during the nonbreeding season. 
Our objectives are twofold. First, we use simulated data 
to demonstrate that the method is able to return unbiased 
estimates of transition probabilities and to determine how 
different sampling designs influence the estimability of 
transition probabilities. Second, we apply the model to 
tracking data from Painted Buntings (Passerina ciris), a 
declining migratory songbird that is thought to be threat-
ened by illegal pet trade in parts of its nonbreeding range. 
The estimated transition probabilities and nonbreeding 
survival probabilities from our analysis are consistent with 
predictions about where Painted Buntings are most at risk 
of capture during the winter, underscoring the potential of 
these methods to improve inference from geolocators and 
reveal new insights into the ecology and conservation of 
migratory species.

MATERIALS AND METHODS

We assume that researchers deploy archival geolocators 
to determine migration routes used by different popula-
tions of a focal species with an annual cycle consisting 
of stationary breeding and nonbreeding periods, sep-
arated by annual migrations. Delineation of popula-
tions will depend on the study system and will often 
be based on sampling logistics (Cohen et  al. 2018), 
though may also be based on geopolitical boundaries, 
genetic data (Ruegg et  al. 2014), or demographic data 
(Rushing et al. 2016). Researchers deploy geolocators at 
s = 1,2,3,…,S breeding sites over t = 1,2,3,…,T years and 
each recovered geolocator is used to assign individuals 
i  =  1,2,3,…,I to one of j  =  1,2,…,J distinct nonbreeding 
regions. The objective of the study is to determine the 
proportion of individuals from breeding site s that mi-
grate to nonbreeding region j, which we represent by a 
S × J transition matrix Ψ. In addition to the deployment 
of geolocators, we assume that researchers also apply 
marks (e.g., leg bands) to individuals in each breeding 
site to estimate apparent annual survival at each of the 
S breeding sites using mark–recapture or mark-re-sight 
methodologies. The integrated model we outline below 
assumes that geolocator individuals are not included in 
the mark–capture data set, though small violations of 
this assumption are unlikely to have practical effects on 
inference (Abadi et al. 2010).

These data provide the following summaries:

(1) � N: a S × T matrix containing the number of geolocators 
deployed at site each breeding site in each year

(2) � w: a S × J × T matrix indicating the number of recovered 
geolocators from site s that spent the nonbreeding 
season in region j in year t

(3) � ys: an I × T matrix containing the annual encounter his-
tories of marked birds at site s

For the purposes of this paper, we assume no uncertainty 
in determining the nonbreeding region of each individual, 
though it may be possible to relax this assumption (see 
Discussion). In most applications, survival data will be col-
lected over longer time scales than geolocator data, which 
should not pose problems as long as the estimated survival 
probabilities apply to individuals tracked using geolocators.

Both the geolocator data and the mark–recapture data 
contain information about the underlying transition ma-
trix Ψ, allowing us to integrate these two data sets within 
a single analysis. In the sections below, we describe sub-
models for the geolocator recovery and mark–recapture 
data that allow us to parameterize each model in terms of 
the underlying transition matrix.

Geolocator Recovery Model
Rather than interpret the w entries as proportional to Ψ 
(the default of most archival tagging studies), we derive 
an explicit geolocator recovery model that treats w as a 
random variable governed by both the transition matrix 
and annual survival probabilities for birds wintering in 
each nonbreeding region. For each breeding site s and year 
t, we model the observed number of geolocator individuals 
from breeding site s that went to nonbreeding region j as:

ws,t ∼ multinomial(φ ψs P,Ns,t)� (1)

where ws,t is a vector indicating the number of recovered 
tags from each nonbreeding region, ϕ is a vector con-
taining the annual apparent survival probabilities for in-
dividuals that migrated to each nonbreeding region, Ψ s is 
a vector indicating the probability that a bird from site s 
migrates to each nonbreeding region (with the constraint 

that 
J∑

j=1
ψjs = 1), and P is the probability of recapturing a 

geolocator individual given that it survived and returned. 
For the model described here, we assume that P is constant 
across all sites and years, though this assumption could be 
relaxed by including occasion-specific sampling covariates 
via a logit-link. We also assume Ψ and ϕ are constant across 
years. This assumption could also be relaxed by including 
covariates (e.g., sex) and/or allowing temporal variation in 
one or both parameters. Our calculation of ϕ also assumes 
that mortality can occur anywhere during the annual cycle 
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(e.g., on fall migration or winter quarters) and is inde-
pendent of breeding location. Finally, our formulation as-
sumes that geolocator individuals are captured in the year 
following tag deployment. This will often be the case in 
many studies, though it is possible for recoveries to occur 
multiple years after tag deployment. Although we do not 
show it here, this situation could be incorporated into the 
model by parameterizing the geolocator recovery model 
at the individual level and indexing recovery probabilities 
based on the appropriate number of survival occasions.

Mark–Recapture Model
Encounter data from marked individuals can be used to 
estimate the probability that an individual breeding at 
site s survives and returns to breed the next year (Φ S), 
which is equivalent to the marginal probability of sur-
vival across the entire nonbreeding area (i.e. the average 
nonbreeding survival weighted by the transition prob-
abilities to each region). Apparent survival can be es-
timated using a variety of capture–recapture methods, 
for example the standard Cormack–Jolly–Seber 
(CJS) model:

zi,s,t ∼ Bernoulli(Φszi,s,t−1)

yi,s,t ∼ Bernoulli(ds,tzi,s,t)
� (2)

where zi,s,t is the true state (dead or alive) of individual i in 
year t and ds,t is the probability of detecting an individual 
given that it is alive and present at site s in year t. Again, 
it is possible to model heterogeneity in these parameters 
by including covariates on detection probability using a 
logit-link.

Assuming that the marked and geolocator birds have 
the same survival probability, overall survival probability 
at each breeding site is equivalent to the average of the 
nonbreeding survivals weighted by the proportion of indi-
viduals that spent the nonbreeding season in each region:

Φs =

J∑
j=1

φjψjs� (3)

Equation (3) allows us to parameterize the CJS model 
in terms of the underlying transition matrix Ψ and re-
gional survival probabilities ϕ, thereby integrating the two 
sub-models.

Simulations
We used simulated data to determine what biological 
scenarios yield unbiased estimates of Ψ and ϕ j. In CMR 
models, parameter identifiability can be assessed by simu-
lating capture histories for a very large number of individ-
uals and then quantifying the bias of parameter estimates 
from the model (Gimenez et al. 2004). With large sample 

sizes, the observed frequencies should be equal to their 
expected values (i.e. no sampling error) and thus any 
bias in the estimated parameters indicates unidentifiable 
parameters.

Identifiability of Ψ and ϕ
j

To determine whether Ψ and ϕ j are identifiable using 
the model described by Equations (1–3), we simulated 
geolocator recovery and CMR data assuming 10,000 
geolocators deployed at each of 3 breeding sites and 20,000 
new individuals added to the CMR data in each year at each 
site. These values were chosen to be large enough that es-
timates of Ψ and ϕ j were not influenced by sampling error 
(Gimenez et al. 2004). For each breeding site, we simulated 
random transition probabilities to each of 3 nonbreeding 
regions by drawing random values from Uniform (0.2,0.9) 
and then scaling to ensure the transition probabilities 
summed to 1.  Restricting values to 0.2–0.9 ensured that 
transition probabilities were not close to 0.  Transition 
probabilities for each breeding site were then combined to 
create the true Ψ matrix for the simulation. We next simu-
lated a random survival probability for each nonbreeding 
region by sampling from Uniform(0.2,0.9), which spans 
realistic annual survival probabilities for small migratory 
birds (Sæther 1989). Finally, we used Equations (1–3) to 
generate geolocator recoveries and capture histories using 
the Ψ matrix and ϕ vector created in the previous steps. 
We repeated these steps 500 times to generate a wide range 
of transition probabilities and survival probabilities. In all 
simulations, we assumed 5 years of CMR data, P = 0.8 and 
d = 0.6.

For each simulated data set, we estimated the joint like-
lihood of the model using JAGS version 3.3.0 (Plummer 
2012) called from program R version 3.6.0 (R Core Team 
2016) with package jagsUI version 1.4.2 (Kellner 2016). 
Tag recovery probability P, detection probability d, and 
nonbreeding survival probabilities ϕ were given unin-
formative Uniform(0,1) priors. Priors for the elements 
of Ψ were given uninformative Dirichlet priors to ensure 
that the rows of Ψ summed to 1. Capture histories were 
summarized using the multi-dimensional array format for 
computational efficiency. For all models, we ran 3 chains 
for 25,000 iterations each after an adaptation phase of 
1,000 iterations and discarding the first 2,000 iterations as 
burn-in. Convergence was confirmed through Rhat values 
and visual inspections of trace plots.

Denoting the estimated transition probability from site 
s to region j for the ith simulation (i ∈ 1− 500) as ψ̂i,s,j, we 
measured relative bias in the transition estimates to each 
nonbreeding as 1S (ψ̂i,s,j −ψi,s,j)/ψi,s,j. To compare the es-
timates from the integrated model to the uncorrected 
estimates from the raw geolocator recoveries, we also con-
verted the elements of wi to proportions and measured 
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relative bias in the connectivity to each nonbreeding re-

gion as 1S
S∑

s=1
(wi,s,j −ψi,s,j)/ψi,s,j. We predicted that the un-

corrected estimates would be negatively biased for regions 
with low survival (transition probabilities underestimated) 
and positively biased for regions with high survival (tran-
sition probabilities overestimated) whereas the corrected 
estimates from the integrated model would be unbiased for 
all survival estimates. Because “low” and “high” are defined 
relative to survival probabilities for other nonbreeding 
regions, we scaled the survival probabilities within each 
simulation to range from 0 (for the lowest survival region) 
to 1 (for the highest survival region). To test our predic-
tion about the relationship between bias and nonbreeding 
survival, we estimated the correlation between bias of each 
element of wi,s,j and ψ̂i,s,j  and the corresponding relative 
survival probabilities We predicted that the correlation 
should be positive for the uncorrected estimates and close 
to 0 for the corrected estimates. Finally, we measured rela-
tive bias for each estimate of ϕ j as

1
500

1
3

500∑
i=1

3∑
j=1

(φ̂i,j − φi,j)/φi,j

In addition to estimating transition and survival probabil-
ities, many tracking studies are interested in quantifying 
the strength of migratory connectivity (i.e. the extent to 
which individuals and populations remain together be-
tween seasons of the annual cycle; Cohen et al. 2018). The 
strength of migratory connectivity, hereafter MC, is a func-
tion of the transition matrix Ψ. Estimating MC from the 
uncorrected transition matrix w could therefore result in 
biased estimates. However, MC measures the relative links 
between breeding and nonbreeding populations and may 
not suffer from survivorship bias if transition probabilities 
are equally biased for all focal populations (J. Hostetler 
personal communication). For each simulated data set i, 
we used the calcMC function from the MigConnectivity R 
package (Hostetler and Hallworth 2018) to estimate MC 
using the “true” transition matrix Ψ (hereafter MCΨ,i), the 
raw observation matrix w (hereafter MCw,i), and the es-
timated matrix ψ̂  from the integrated model (hereafter 
MC

ψ̂,i). We measured relative bias in MCw,i and MC
ψ̂,i  as 

(MCk,i − MCΨ,i)/MCΨ,i, where k equals either w or ψ̂ , and re-
port the median bias of the 500 simulations.

Estimability of Ψ
Even if Ψ is intrinsically identifiable, a number of factors 
may influence whether estimates of transition probabil-
ities are unbiased under real-world sampling scenarios (i.e. 
whether the parameters are estimable; Auger-Méthé et al. 
2016). We conducted 3 simulation scenarios to determine 
what factors influence the estimability of Ψ:

Number of geolocators.  To investigate how the 
number of deployed geolocators and marks influences the 
estimability of Ψ, we simulated data with sample sizes more 
typical of geolocator and CMR studies. Specifically, we 
simulated data assuming 10, 20, 30, 40, and 50 geolocators 
deployed at each breeding site and 40, 75, 125, 200, and 
300 individuals added to the CMR data set in each year. As 
in the identifiability simulations, we assumed 3 breeding 
and 3 nonbreeding sites, 5  years of CMR data, P  =  0.8 
and d = 0.6. The number of geolocators and the number 
of marked individuals were varied in a factorial design, 
resulting in 25 simulation scenarios. For each scenario, 
we simulated 500 data sets with randomly generated Ψ 
matrices and ϕj values.

Number of years.  The number of years included in 
the CMR study may influence the estimability of Ψ by 
influencing the precision of the Φ s estimates. We simulated 
data assuming 4, 6, 8, 10, and 12 years of CMR data. As 
for the other simulations, we generated 500 data sets with 
random Ψ matrices and ϕ j values for each simulation. For 
all simulations in this scenario, we assumed 3 breeding and 
3 nonbreeding sites, 30 geolocator deployed at each site, 
100 individuals added to the CMR data set in each year, 
P = 0.8 and d = 0.6.

Number of sites. Increasing or decreasing the number 
of deployment sites and nonbreeding regions could influ-
ence estimability through its influence on the precision of 
survival and transition probability estimates. We simu-
lated data assuming 3, 4, 5, 6, and 7 breeding sites and 
nonbreeding regions. We generated 500 data sets with 
random Ψ matrices and ϕj values for each simulation and 
we assumed 5 years of CMR data, 30 geolocators deployed 
at each site, 100 individuals added to the CMR data set in 
each year, P = 0.8 and d = 0.6.

For all estimability simulations, model fitting and evalu-
ation was conducted as described above.

Application to Eastern Painted Bunting 
Population Data
Painted Buntings are small (~16  g) migratory songbirds 
that breed in two distinct populations within the United 
States (Herr et al. 2011). The “western” population breeds 
primarily in Texas, Oklahoma, Louisiana, and Arkansas 
while the “eastern” population is restricted to a narrow 
band of habitat along the coasts of Florida, Georgia, South 
Carolina, and North Carolina. Monitoring data indicate 
that the eastern population has declined steadily over the 
past half-century (Sykes Jr. and Holzman 2005), likely due 
to habitat loss and the illegal pet trade (Sykes et al. 2007, 
2019). Capture of adult males for the pet trade is thought to 
be a particular problem in Cuba, where keeping wild birds 
as pets has a long history. However, data on the pet trade 
are largely anecdotal and the effects of this threat on the 
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demography of Painted Bunting populations have not been 
demonstrated (Sykes Jr. et al. 2006).

In 2017 and 2018, we deployed 180 light-level 
geolocators (model P50Z11-7-DIP, Migrate Technology 
Ltd, Coton, Cambridge, UK) on adult male Painted 
Buntings at 6 sites that span the latitudinal distribu-
tion of the eastern population: Carolina Beach State 
Park, North Carolina (34.15°N, 77.88°W), Dewee’s Island, 
South Carolina (32.84°N, 79.72°W), Kiawah Island, South 
Carolina (32.61°N, 80.15°W), Spring Island, South Carolina 
(32.33°N, 80.83°W), Little St. Simons, Georgia (31.29°N, 
81.34°W), and Little Talbot Island, Florida (30.46°N, 
81.42°W). For the purposes of this analysis, we treated the 
three South Carolina sites as a single population unit due 
to their close proximity. Buntings were trapped at feeders 
using mist nets and traps baited with untreated, white 
proso millet (Panicum vergi). Geolocators were attached 
with a leg-loop harness (Rappole and Tipton 1991). We 
recovered 65 geolocators in 2018 and 2019; 61 had viable 
data. Recovery effort was similar among all sites. We used 
the R package SGAT (Lisovski and Hahn 2012) to generate 
location estimates from the raw light data. Twilights were 
identified using the function preprocessLight from the R 
package TwGeos (Lisovski et al. 2016). We used a light-level 
threshold of 1 or 2 for all birds, depending on the amount 
of shading in the data. We used functions within SGAT to 
determine appropriate zenith angles for each bird during 
the stationary breeding period when individuals are at 
known locations. To determine appropriate zenith angles 
at times of the year when the location is unknown (i.e. the 
nonbreeding season), we used the Hill-Ekstrom calibration 
method implemented using the function findHEZenith 
from the R package TwGeos (Lisovski et  al. 2016). For 
each individual, we took a weighted median of all gen-
erated locations during the core of the wintering period 
(December and January) and used that centroid to define 
each individual's wintering location. Individuals were then 
assigned to one of the following four regions based on their 
estimated wintering centroid: northern Florida, southern 
Florida, the Bahamas, or Cuba (Supplemental Material 
Table S1).

Survival data for this analysis were collected from 1999 
to 2005 as part of a separate study on the demography of 
eastern Painted Buntings (Sykes et al. 2019). Buntings were 
captured in mist nests situated at feeders filled with millet. 
Captured birds were immediately removed from mist 
nets, aged (hatch-year, second-year, or after-second-year), 
sexed, and banded. Birds were marked with 3 colored 
plastic leg bands and one U.S. Geological Survey (USGS) 
numbered aluminum leg band arranged 2 on each leg, in 
unique 4-band combinations for individual identification. 
Unbanded individuals were marked through 2003. In sub-
sequent years, missing or faded color-bands were replaced 
on individuals still retaining the USGS metal bands, when 

possible. Banded buntings were re-sighted at feeders during 
observation sessions starting in 2001. Observation sessions 
were conducted once annually during the breeding season 
at each site. In years when birds were banded (2001–2003), 
observation sessions were conducted at least one day be-
fore banding sessions. Feeders were arranged so all open 
feeding ports were visible by observers using 20–60× 
zoom spotting scopes, ~10 m away from the feeders (see 
Sykes et al. 2019 for further details). For this analysis, we 
included only data from males originally banded as adults 
(either second-year or after-second-year; n = 402). We fur-
ther included only banding locations within 20 km of our 
geolocator deployment sites to ensure that survival esti-
mates from the re-sight data corresponded as closely as 
possible to the geolocator study (Supplemental Material 
Table S2).

Geolocator recovery and CMR data were used to par-
ameterize the integrated model. Mark re-sight data from 
individual feeders (Supplemental Material Table S2) were 
pooled to estimate a single survival probability for each 
region (North Carolina, South Carolina, Georgia, and 
Florida), forming the basis for implementing Equation (3) 
in this analysis. Thus, we did not model annual variation 
in survival and assumed that the time-averaged survival 
estimates from the mark-re-sight data are representative 
of the survival probabilities experienced by birds in the 
geolocator study. Following Sykes et al. (2019), we included 
site-specific effects of human development within 700 m 
and feeder-level random effects on survival. We also in-
cluded feeder-specific effort covariates in the detection 
model (Sykes et  al. 2019). Using apparent survival esti-
mates, we estimated weighted transition probabilities from 
each breeding region to each wintering region. To examine 
differences in biased and unbiased transition probabilities, 
we calculated unweighted (raw) transition probabilities by 
dividing the number of geolocators recovered at a breeding 
site from a single wintering region by the total number of 
geolocators recovered at a site from any wintering region. 
We used uninformative priors for all parameters. Posterior 
distributions were based on 3 chains, run for 20,000 it-
erations each after discarding the first 2,500 iterations 
as burn-in. Model convergence was assessed using R-hat 
values (Brooks and Gelman 1998) and by visual inspection 
of trace plots.

RESULTS

Simulation
Both Ψ and ϕj were identifiable using the integrated model 
(Figure 1). As predicted, the correlation between relative 
nonbreeding survival and the bias in the uncorrected es-
timates of Ψ was positive (0.66), signifying that the tran-
sition probabilities for lowest-survival regions were 
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underestimated and overestimated for the highest-survival 
regions (Figure 1). This structural bias was substantial for 
the extreme low and high-survival regions, under- and 
over-estimating Ψ j by nearly 45%, respectively. Transition 
probabilities to intermediate survival regions could be 
either overestimated or underestimated depending on 
whether survival was greater than or less than the average 
survival probability across all regions, respectively (Figure 
1). In contrast, the integrated model returned unbiased es-
timates of Ψ regardless of the underlying survival probabil-
ities (correlation = –0.03), leading to the minimal relative 
bias of <1% even at the most extreme low and high-survival 
sites (Figure 1). Estimates of ϕ j from the integrated model 
were also minimally biased (0.017). Estimates of MC 
showed no bias when using the transition matrix from 
the integrated model (median relative bias <0.0001) and a 
small negative bias for the uncorrected estimates (median 
relative bias = –0.04). Although bias in MCw was small on 
average, these estimates showed much larger variation than 
the MC

ψ̂
 estimates (Figure 2). Root-mean-square error of 

the MCw estimates was 0.03, nearly 10 times higher than 
the root-mean-square error of the MC

ψ̂
 estimates (0.004).

Estimability simulations indicated that, under more 
realistic sample sizes, some bias remains in the estimates 
of Ψ and ϕ j from the integrated model, though the in-
tegrated model greatly reduced bias in Ψ relative to the 
uncorrected estimates. Across all scenarios, the relative 
bias of Ψ j for the extreme low and high-survival regions 
was generally <10% for the integrated model, much lower 
than the approximately 40–50% of the uncorrected esti-
mates. Even with only 10 geolocators deployed at each 
site and 75 individuals per year added to the capture–
recapture data (Figure 3), the correlation between bias 
and nonbreeding survival was much lower in the inte-
grated model (0.25, 0.23–0.27) relative to the uncor-
rected estimates (0.63, 0.60–0.67). Deploying additional 
geolocators reduced bias substantially, whereas adding 
additional individuals to the CMR data set had less influ-
ence on bias (Table 1). Bias in the integrated model gen-
erally decreased as both the length of the CMR study and 
the number of breeding sites and nonbreeding regions 
increased (see Supplemental Material Appendix S2), 
though the decreases in bias were small and the value 
of adding more years/sites generally decreased as more 
were added. Estimates of ϕ j were positively biased by ap-
proximately 2–5% under all estimability scenarios. Bias 
in ϕ j generally decreased as more marks (Table 1) and 
more years of CMR data were included in the analysis but 

FIGURE 1.  Bias in the estimated transition probabilities Ψ from 
500 identifiability simulations. In each simulation, individuals mi-
grate to one of three nonbreeding regions (ranked within each 
simulation as low, intermediate, or high), which differ in survival 
probability. Orange points show bias in the estimated transition 
probabilities as a function of relative survival (ranging from 0 to 
1; see text for details) for each nonbreeding region based on the 
uncorrected geolocator recoveries. Blue points show bias for the 
same transition probabilities but estimated using the integrated 
model. Box-and-whisker plots summarize bias for nonbreeding 
regions categorized as the low, medium, or high survival region 
in each simulation, with the middle line showing the median, 
bottom and top hinges showing the 25th and 75th quantiles, and 
the top and bottom whiskers are 1.5 times the distance between 
the 25th and 75th quantiles. A small jitter has been added to aid 
visualization of the low and high survival points.

FIGURE 2.  Relationship between the true and estimated 
strength of migratory connectivity (MC) for the 500 identifiability 
simulations. Estimated MC are based on either the uncorrected 
transition probabilities (orange points) or the transition prob-
abilities from the integrated model (blue points). The black line 
indicates a 1:1 relationship between the true and estimated MC 
values.
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FIGURE 3.  Bias in the estimated transition probabilities Ψ from 500 simulations in which 10 geolocators are deployed at each site and 
75 marked individuals are added to the capture-recapture model in each year. In each simulation, individuals migrate to one of three 
nonbreeding regions (ranked within each simulation as low, intermediate, or high), which differ in survival probability. Orange points 
show bias in the estimated transition probabilities as a function of relative survival (ranging from 0 to 1; see text for details) for each 
nonbreeding region based on the uncorrected geolocator recoveries. Blue points show bias for the same transition probabilities but 
estimated using the integrated model. Box-and-whisker plots summarize bias for nonbreeding regions categorized as the low, me-
dium, or high survival region in each simulation, with the middle line showing the median, bottom and top hinges showing the 25th 
and 75th quantiles, and the top and bottom whiskers are 1.5 times the distance between the 25th and 75th quantiles. A small jitter has 
been added to aid visualization of the low and high survival points.

TABLE 1.  Estimability of transition probabilities and nonbreeding survival probabilities as a function of the number of marks 
and geolocators deployed. Correlations are the mean and 95% confidence interval of the correlation between bias and relative 
nonbreeding survival across the 500 simulated data sets. The final column is the mean bias in the estimated survival probabilities for 
each nonbreeding region, denoted ϕ j
Number of marks Number of archival tags Correlation–integrated model Correlation–uncorrected Bias in ϕ j

40 10 0.287 (0.264–0.310) 0.619 (0.591–0.647) 0.045
40 20 0.246 (0.225–0.268) 0.649 (0.625–0.673) 0.034
40 30 0.206 (0.186–0.226) 0.626 (0.604–0.648) 0.037
40 40 0.197 (0.177–0.217) 0.614 (0.593–0.634) 0.039
40 50 0.205 (0.185–0.225) 0.635 (0.615–0.655) 0.037
75 10 0.252 (0.229–0.274) 0.631 (0.603–0.659) 0.046
75 20 0.269 (0.249–0.290) 0.648 (0.624–0.672) 0.044
75 30 0.216 (0.196–0.236) 0.652 (0.628–0.675) 0.039
75 40 0.203 (0.182–0.224) 0.619 (0.598–0.639) 0.038
75 50 0.193 (0.173–0.213) 0.638 (0.618–0.659) 0.036
125 10 0.283 (0.261–0.305) 0.647 (0.618–0.676) 0.051
125 20 0.239 (0.217–0.261) 0.635 (0.611–0.660) 0.042
125 30 0.191 (0.172–0.211) 0.634 (0.613–0.656) 0.032
125 40 0.180 (0.160–0.199) 0.615 (0.594–0.636) 0.033
125 50 0.175 (0.156–0.194) 0.614 (0.593–0.634) 0.037
200 10 0.243 (0.221–0.264) 0.613 (0.584–0.642) 0.047
200 20 0.235 (0.214–0.256) 0.637 (0.614–0.660) 0.042
200 30 0.201 (0.181–0.221) 0.629 (0.608–0.651) 0.038
200 40 0.156 (0.137–0.176) 0.612 (0.591–0.633) 0.039
200 50 0.164 (0.145–0.183) 0.616 (0.596–0.636) 0.028
300 10 0.240 (0.217–0.263) 0.582 (0.554. –0.610) 0.043
300 20 0.218 (0.198–0.238) 0.605 (0.581–0.629) 0.043
300 30 0.199 (0.179–0.219) 0.632 (0.610 –0.653) 0.040
300 40 0.178 (0.158–0.198) 0.649 (0.628–0.670) 0.038
300 50 0.159 (0.139–0.178) 0.636 (0.616–0.657) 0.036
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was not sensitive to the number of sites (Supplemental 
Material Appendix S2).

Painted Bunting Survival and Migratory Connectivity
Estimates for apparent annual survival within breeding re-
gions were similar for Florida (mean: 0.68, credible interval 
(CI): 0.58–0.76), Georgia (0.68, CI: 0.59–0.76), and South 
Carolina (0.66, CI: 0.58–0.74), but were notably lower in 
North Carolina (0.6, CI: 0.48–0.71). Of the 180 geolocators 
deployed in 2017 and 2018, we recovered 61 geolocators 
with usable data (Supplemental Material Table S1). Raw 
transition probabilities estimated from these geolocators 
suggested that Painted Buntings breeding in Florida was 
relatively evenly distributed among the 4 nonbreeding re-
gions, birds from Georgia and South Carolina were most 
likely to winter in south Florida, and birds from North 
Carolina were most likely to winter in Cuba (Table 2). No 
geolocators were recovered in North Carolina from birds 
that had wintered in north or south Florida, and therefore 
transition probabilities to these wintering regions were es-
timated to be zero based on the raw recoveries.

Results from the integrated model suggest that the winter 
region affected annual survival. Survival was comparable 
for buntings wintering in north Florida (0.72, CI: 0.4–
0.98), south Florida (0.75, CI: 0.49–0.98), and the Bahamas 
(0.72, CI: 0.39–0.98; Figure 4). Male buntings wintering 
in Cuba, however, had measurably lower annual survival 
probabilities (0.57, CI: 0.37–0.9). Due to regional survival 
variation in nonbreeding survival, transition probabilities 
from the integrated model differed from the raw estimates 
in important ways (Table 2). In particular, the integrated 
model suggested that birds breeding in Georgia and South 
Carolina breeding populations were less likely to winter 
in south Florida and more likely to winter in Cuba than 
suggested by the raw recovery data. These differences are 
consistent with over-estimation of connectivity to south 
Florida due to the high survival in that region and under-
estimation of connectivity to Cuba due to the low survival 
there. For the North Carolina population, the integrated 
model actually indicated lower connectivity to Cuba than 
the raw data. This unintuitive result occurred because the 
integrated model estimated low but non-zero connectivity 
to north and south Florida despite no geolocator recoveries 
from these regions. In total, the estimated connectivity 
between North Carolina and Florida was approximately 
15–20%, which more than offset differences between the 
integrated and raw connectivity estimates to Cuba.

DISCUSSION

Our simulations confirm that estimating migratory tran-
sition probabilities from observed geolocator recoveries 
produces biased estimates when survival probabilities TA
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differ among nonbreeding regions. Given that regional 
variation in nonbreeding survival is the rule rather than 
the exception for most migratory species (Hewson et  al. 

2016, Healy et al. 2017, Kramer et al. 2018), survivorship 
bias is likely to be a pervasive issue for studies using arch-
ival tracking devices. As we demonstrate, the integration 

FIGURE 4.  Estimated transition probabilities and nonbreeding survival of southeastern Painted Buntings (Passerina ciris) from (A) 
Kiawah Island and Spring Island, SC, (B) Wilmington, NC, (C) Little St. Simons Island, GA, and (D) Big Talbot Island State Park, FL. Red 
dots indicate geolocator deployment sites and grey dots indicate sites where mark–re-sight data were collected. Estimated survival 
probabilities for each of the four nonbreeding regions are shown in panel (A). Values at the base of each arrow are the estimated tran-
sition probabilities from the integrated model for each breeding site and nonbreeding region. Arrows are color-coded by nonbreeding 
region and sized relative to the estimated transition probabilities.
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of a probabilistic geolocator recovery model with mark–
recapture data can reduce or eliminate survivorship bias, 
providing a practical approach for strengthening infer-
ences about migratory connectivity.

The use of archival geolocators has grown dramat-
ically over the past decade, with over 120 publications 
from 2010 to 2017 (McKinnon and Love 2018), motiv-
ating multiple research teams to investigate the effects of 
these geolocators on the survival of tracked individuals 
(Costantini and Møller 2013, Peterson et  al. 2015, Brlík 
et al. 2020). However, we are not aware of any study that 
has been designed to account for survivorship bias on the 
interpretation of data from archival geolocators. Our re-
sults indicate that assuming observed geolocator recov-
eries accurately reflect the underlying migration patterns 
is potentially problematic and in extreme cases could 
lead to false inferences about which nonbreeding regions 
are most important for specific breeding populations. 
Reliance on raw recovery data may be especially problem-
atic for archival tracking studies based on small sample 
sizes of deployed geolocators. Mortality or dispersal 
could result in no individuals being observed to migrate 
to certain nonbreeding regions. This was the case for our 
sample of Painted Buntings from North Carolina, which 
included no birds wintering in north or south Florida. In 
this case, the true transition probabilities are unlikely to 
be 0; instead, these zeros are probably the result of sam-
pling variation with only a small number of tracked birds. 
Defining an explicit geolocator recovery model that treats 
the observed data as realizations of one or more stochastic 
process or sampling models provides a means to account 
for sampling variation and estimate the underlying process 
model parameters, even without integrating the survival 
data in the model.

Integrating geolocator recovery and survival data en-
ables novel insights that neither source of information 
alone can provide. Our integrated model provided com-
pelling evidence that survival probabilities of Painted 
Buntings wintering in Cuba may be 15–20% lower than 
for birds that winter in other parts of the range. Although 
the nonbreeding survival rates had high uncertainty, these 
results are consistent with the hypothesis that Painted 
Buntings migrating to Cuba face higher mortality than in-
dividuals wintering elsewhere in the range. One explan-
ation for this result is that Painted Buntings in Cuba are at 
higher risk of capture as part of the illegal pet trade than 
birds that winter in Florida or the Bahamas. Reliable es-
timates of the number of buntings captured in Cuba or 
Florida are not available but anecdotal reports have docu-
mented localized trapping of as many as 700 buntings over 
3 days in Cuba (Sykes Jr. et al. 2006, 2007). Additionally, of 
the 80 geolocators deployed in 2018 as part of this study, at 
least three are known to have been captured in Cuba and 

Sykes et  al. (2007) confirmed 19 buntings banded in the 
US and captured in Cuba. Of course, other explanations 
could explain our results, including longer migration dis-
tances required to reach Cuba or differences in habitat 
loss throughout the winter range. Our results nonetheless 
demonstrate how integrating tracking and survival data 
can lead to deeper insights about the dynamics of migra-
tory species.

A common objective of recent tracking studies is to 
estimate the strength of migratory connectivity (Cohen 
et  al. 2018), an index of the extent that individuals and 
populations remain together between seasons of the an-
nual cycle. Even when the underlying transition prob-
abilities are biased due to differential survival, our 
simulations indicate that MC is largely unbiased when 
derived from observed geolocator recoveries. This result 
is not unexpected because the MC metric is based on the 
relative links between breeding and nonbreeding popu-
lations, rather than the absolute transition probabilities. 
In other words, transition probabilities to low-survival 
nonbreeding regions, estimated from the raw recoveries, 
will be underestimated for all breeding sites and as a re-
sult, the correlation of distances between breeding and 
nonbreeding populations will remain unbiased. These 
results suggest that, on average, published estimates of 
MC based on archival geolocators should be considered 
unbiased. However, we found that MC estimates based 
on the integrated model were, on average, more precise, 
that is much closer to the true MC value, than estimates 
based on raw recovery data. This result is likely due to 
explicitly accounting for process and sampling uncer-
tainty in the geolocator recovery model. By viewing the 
realized recoveries as stochastic processes, the integrated 
model attempts to separate the expected transition and 
survival probabilities from the process and sampling 
noise inherent to the data collection process. Reducing 
the influence of sampling and process uncertainty in the 
Ψ estimates in turn reduces noise in the estimates of MC 
compared to estimates based on the raw geolocator re-
coveries. Future work that allows researchers to directly 
account for survivorship bias and produce more accurate 
estimates of MC would be beneficial.

Our integrated approach permits unbiased estimates of 
nonbreeding survival and transition probabilities for sea-
sonal ranges, but makes several assumptions. First, we as-
sume that nonbreeding survival is independent of breeding 
origin. If nonbreeding survival differs among breeding 
sites, because for example, individuals migrate different 
distances, then site-specific transition probabilities will 
be confounded with variation in site-specific nonbreeding 
survival. Second, we assume that geolocator recovery 
probability is independent of nonbreeding location. If the 
probability of recovering geolocators (conditional on an 
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individual surviving and returning to the deployment site) 
is influenced by events outside the breeding season, this 
heterogeneity would incorrectly be interpreted as hetero-
geneity in survival. Third, individuals tracked using archival 
geolocators are assumed to have the same survival prob-
ability as individuals in the capture–recapture data set. 
Recent meta-analyses of light-level geolocator studies found 
that these geolocators can have a small, negative effect 
on survival, especially for small and highly aerial species 
(Costantini and Møller 2013, Brlík et  al. 2020). However, 
geolocator effects should not bias transition probability es-
timates as long as they are independent of where individuals 
overwinter. In this case, the lower return rate of geolocator 
individuals will be reflected in lower geolocator recovery 
probabilities but other parameters should be unbiased. 
Fourth, integrating geolocator recovery and capture–re-
capture models assumes independence of the two data sets. 
Strictly speaking, if some individuals are shared between 
the two data sets, variance parameters in the model will be 
underestimated, though small violations of this assumption 
are unlikely to affect inference (Abadi et al. 2010). Fifth, we 
assumed no uncertainty in the nonbreeding region of each 
tracked individual. Some archival geolocators, particularly 
light-level geolocators, have substantial uncertainty and 
even with large nonbreeding regions, some individuals may 
not be assigned to regions with 100% accuracy. Uncertainty 
in nonbreeding regions could be incorporated into the 
analysis by treating nonbreeding assignments as categor-
ical random variables with probabilities estimated from 
the raw tracking data, though this modification is beyond 
the scope of this paper. Finally, assumptions of the chosen 
survival model also apply to the integrated geolocator 
recovery model.

Prior to the development of miniaturized archival 
tracking devices, migratory animals could not be tracked 
across their entire annual cycle. This technology has cre-
ated novel research opportunities for thousands of spe-
cies, but data from archival geolocators must be carefully 
interpreted. Discussions about inferences from archival 
geolocators have mainly focused on whether geolocators 
influence the fitness or behavior of tracked individuals 
(Arlt et  al. 2013, Costantini and Møller 2013, Brlík et  al. 
2020). Although these issues are important, the effects of 
survivorship bias on inference from archival geolocators 
have not been widely acknowledged. Our results dem-
onstrate that survivorship bias, a potentially ubiquitous 
outcome of archival geolocators, can be reduced or elim-
inated if data for estimating survival is also available for 
each deployment site. Thanks to the focus on quantifying 
geolocator effects, many tracking studies are likely already 
collecting mark–recapture or mark–re-sight data that 
could be used to fit the integrated model presented here. 
In cases where researchers are designing new tracking 

studies, the collection of these auxiliary survival data 
should be prioritized both to measure geolocator effects 
and obtain accurate transition probabilities and regional 
nonbreeding survival probabilities. Although estimation 
of MC appears to be relatively robust to variation in sur-
vival, transition probabilities are not. Given that little is 
known about regional survival in most species, inferences 
about migration patterns from archival patterns should be 
interpreted very cautiously unless measures are taken to 
correct for survivorship bias. Improving inferences from 
archival geolocators through proper data collection and 
further development of integrated models will enable this 
technology to further transform the study of small, migra-
tory organisms.

SUPPLEMENTAL MATERIAL

Supplemental material is available online at Ornithological 
Applications online.
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