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ABSTRACT

Archival geolocators have transformed the study of small, migratory organisms but analysis of data from these devices
requires bias correction because tags are only recovered from individuals that survive and are re-captured at their tag-
ging location. We show that integrating geolocator recovery data and mark-resight data enables unbiased estimates of
both migratory connectivity between breeding and nonbreeding populations and region-specific survival probabilities
for wintering locations. Using simulations, we first demonstrate that an integrated Bayesian model returns unbiased es-
timates of transition probabilities between seasonal ranges. We also used simulations to determine how different sam-
pling designs influence the estimability of transition probabilities. We then parameterized the model with tracking data
and mark-resight data from declining Painted Bunting (Passerina ciris) populations breeding in the eastern United States,
hypothesized to be threatened by the illegal pet trade in parts of their Caribbean, nonbreeding range. Consistent with
this hypothesis, we found that male buntings wintering in Cuba were 20% less likely to return to the breeding grounds
than birds wintering elsewhere in their range. Improving inferences from archival tags through proper data collection
and further development of integrated models will advance our understanding of the full annual cycle ecology of mi-
gratory species.

Keywords: archival tracking tags, integrated Bayesian models, mark-resight data, migratory connectivity, Painted
Bunting, Passerina ciris, survival bias

LAY SUMMARY

« Recent advances in the miniaturization of tracking devices have transformed the ability of researchers to track small migra-
tory birds throughout their journeys. However, the small size of these devices prevents transmitting the data to satellites, so
birds must be recaptured to obtain the tracking data.

« Because tracking data can only be obtained from individuals that survive and return the following year, these data
underestimate how many birds migrate to regions where they are less likely to survive, which may lead to incorrect
conclusions about what areas are most important to a species.

+ We show that more accurate estimates of migratory patterns can be obtained by combining the data from the tracking
tags with information about the survival of individuals within each population.

« Application of this method to tracking data from Painted Buntings revealed that males wintering in Cuba experience
nearly 15-20% lower survival than males wintering elsewhere in the range.

La integracién de datos de rastreo y de avistamientos repetidos permite inferencias no sesgadas sobre la
conectividad migratoria y la supervivencia en el rango de invierno a partir de marcadores de registro

RESUMEN

Los geo-localizadores de registro han transformado el estudio de los organismos migratorios pequefos, pero el anélisis
de los datos provenientes de estos aparatos requiere correcciones de sesgo debido a que los marcadores son solo
recuperados de individuos que sobreviven y que son recapturados en su ubicacion de marcado. Mostramos que la
integracién de datos de geo-localizadores recuperados y de marcas-reavistamientos permiten estimaciones no sesgadas
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tanto de conectividad migratoria entre poblaciones reproductivas y no reproductivas, como de probabilidades de
supervivencia especificas por regién para los lugares de invernada. Usando simulaciones, primero demostramos que
un modelo bayesiano integrado genera estimaciones no sesgadas de probabilidades de transicion entre los rangos
estacionales. También usamos simulaciones para determinar cémo diferentes disefios de muestreo influencian la
capacidad de estimar las probabilidades de transicion. Luego, parametrizamos el modelo con datos de rastreo y datos
de marca-reavistamiento de las poblaciones en disminucién de Passerina ciris que se reproducen en el este de Estados
Unidos, hipotéticamente amenazadas por el comercio ilegal de mascotas en partes de su rango no reproductivo del
Caribe. De modo consistente con esta hipdtesis, encontramos que los machos de P. ciris que invernan en Cuba tuvieron
un 20% menos de probabilidad de regresar a los sitios reproductivos que las aves que invernaron en otros lugares de
su rango. Mejorar las inferencias a partir de los marcadores de registro mediante la colecta adecuada de datos y el
subsecuente desarrollo de modelos integrados permitird avanzar nuestro entendimiento sobre la ecologia del ciclo
completo anual de las especies migratorias.

Palabras clave: conectividad migratoria, datos de marca-reavistamiento, marcadores de rastreo y registro, modelos
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INTRODUCTION

Rapid advances and miniaturization of tracking technology
in recent decades have allowed researchers to quantify sea-
sonal migrations of many terrestrial and aquatic species
(Eckert and Stewart 2001, Domeier and Nasby-Lucas 2013,
Jiménez Lépez et al. 2019), to discover previously unknown
migration routes (Sawyer et al. 2009, Smith et al. 2014,
Naidoo et al. 2016), and to identify critical migration stop-
over and nonbreeding areas (Richter and Cumming 2008,
Delmore et al. 2012, Cooper et al. 2019). This information
is essential for understanding population dynamics, dis-
ease transmission, range shifts, resource use, and man-
agement of vulnerable migratory species or populations.
Relatively large species (>60 g body mass) can be tracked
with geolocation tags capable of transmitting location data
to satellites (Scarpignato et al. 2016), but mapping seasonal
movements and winter quarters for the great majority of
migratory vertebrate species requires miniature archival
geolocators (hereafter “geolocators”) that store location
data internally and must be recovered from surviving in-
dividuals (Fraser et al. 2012, Hallworth and Marra 2015,
Peterson et al. 2015).

Although geolocators have been revolutionary for
the study of small migratory organisms (McKinnon and
Love 2018), interpretation of migration patterns from
the observed data must be done with care. In particular,
because geolocators do not transmit data, observed mi-
gration data can only come from individuals that survive
multiple migratory and stationary periods, return to their
tagging location, and are recaptured. Individuals that do
not survive at any other stage of the annual cycle will not
be represented. This form of survivorship bias is problem-
atic for inferring migration patterns if certain migration
routes have lower survival than others. For example, if the
nonbreeding range of a migratory species consists of two
regions, one with high survival and one with low survival,
individuals that migrate to the low-survival region will be
less likely to return to their breeding site than individuals

from the high-survival region. Hence, individuals from the
low-survival region will be under-represented in the ob-
served data relative to their actual proportion. Estimates
of transition probabilities (i.e. the probability that an in-
dividual from breeding site i migrates to nonbreeding re-
gion j) will therefore be under-estimated for low-survival
regions, and over-estimated for high-survival regions (see
Supplemental Material Appendix S1 for additional proof).
Despite the potential for this bias to influence inferences
from archival geolocators, a cursory review of the litera-
ture suggests that quantifying patterns of migratory con-
nectivity based on the interpretation of raw, observed
geolocator data is standard practice (McKinnon and Love
2018, Lisovski et al. 2020).

An analogous bias must be accounted for when
estimating movement rates from band recoveries or
re-sights with geographic variation in recovery/re-sight
probabilities (Brownie et al. 1993, Nichols et al. 1995,
Cohen et al. 2014). Although a long history of model devel-
opment is available to estimate these observation probabil-
ities in dead—recovery and live-re-sight studies (reviewed
by Korner-Nievergelt et al. 2010), we lack an equivalent
approach to account for the effects of survivorship bias
in movement studies based on data from geolocators.
Survivorship bias is an inevitable outcome of using arch-
ival geolocators when survival differs among migration
routes and is therefore likely to be pervasive in the pub-
lished literature.

Here we present an integrated model that accounts for
survivorship bias when estimating migratory transitions
from geolocators. Our approach is similar to the integrated
model proposed by Korner-Nievergelt et al. (2017) in that
it formally combines a geolocator recovery model with
capture—recapture data in a single, unified model of migra-
tory connectivity. Our approach extends this framework
by recognizing that the average survival probability of a
migratory population can be parameterized as the mar-
ginal survival probability across all possible nonbreeding
regions. In other words, the survival probability measured
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by capture—mark-recapture (CMR) methods is the average
survival of each nonbreeding region weighted by the prob-
ability that an individual migrates to each region. As a re-
sult, individuals migrating to low-survival regions result
in both missing geolocator recoveries and lower survival
probability for the population as a whole. An additional
benefit of this integrated model is that it provides esti-
mates of regional survival probabilities without the need
to collect additional data during the nonbreeding season.
Our objectives are twofold. First, we use simulated data
to demonstrate that the method is able to return unbiased
estimates of transition probabilities and to determine how
different sampling designs influence the estimability of
transition probabilities. Second, we apply the model to
tracking data from Painted Buntings (Passerina ciris), a
declining migratory songbird that is thought to be threat-
ened by illegal pet trade in parts of its nonbreeding range.
The estimated transition probabilities and nonbreeding
survival probabilities from our analysis are consistent with
predictions about where Painted Buntings are most at risk
of capture during the winter, underscoring the potential of
these methods to improve inference from geolocators and
reveal new insights into the ecology and conservation of
migratory species.

MATERIALS AND METHODS

We assume that researchers deploy archival geolocators
to determine migration routes used by different popula-
tions of a focal species with an annual cycle consisting
of stationary breeding and nonbreeding periods, sep-
arated by annual migrations. Delineation of popula-
tions will depend on the study system and will often
be based on sampling logistics (Cohen et al. 2018),
though may also be based on geopolitical boundaries,
genetic data (Ruegg et al. 2014), or demographic data
(Rushing et al. 2016). Researchers deploy geolocators at
s =1,2,3,...,S breeding sites over t = 1,2,3,...,T years and
each recovered geolocator is used to assign individuals
i =123,..,Ito one of j = 1,2,...,] distinct nonbreeding
regions. The objective of the study is to determine the
proportion of individuals from breeding site s that mi-
grate to nonbreeding region j, which we represent by a
S x J transition matrix ¥. In addition to the deployment
of geolocators, we assume that researchers also apply
marks (e.g., leg bands) to individuals in each breeding
site to estimate apparent annual survival at each of the
S breeding sites using mark-recapture or mark-re-sight
methodologies. The integrated model we outline below
assumes that geolocator individuals are not included in
the mark-capture data set, though small violations of
this assumption are unlikely to have practical effects on
inference (Abadi et al. 2010).

Unbiased estimates of migratory connectivity 3

These data provide the following summaries:

(1) N:a S x T matrix containing the number of geolocators
deployed at site each breeding site in each year

(2) w:aSxJx T'matrix indicating the number of recovered
geolocators from site s that spent the nonbreeding
season in region j in year ¢

(3) y.;anIx T matrix containing the annual encounter his-
tories of marked birds at site s

For the purposes of this paper, we assume no uncertainty
in determining the nonbreeding region of each individual,
though it may be possible to relax this assumption (see
Discussion). In most applications, survival data will be col-
lected over longer time scales than geolocator data, which
should not pose problems as long as the estimated survival
probabilities apply to individuals tracked using geolocators.

Both the geolocator data and the mark-recapture data
contain information about the underlying transition ma-
trix ¥, allowing us to integrate these two data sets within
a single analysis. In the sections below, we describe sub-
models for the geolocator recovery and mark-recapture
data that allow us to parameterize each model in terms of
the underlying transition matrix.

Geolocator Recovery Model

Rather than interpret the w entries as proportional to ¥
(the default of most archival tagging studies), we derive
an explicit geolocator recovery model that treats w as a
random variable governed by both the transition matrix
and annual survival probabilities for birds wintering in
each nonbreeding region. For each breeding site s and year
t, we model the observed number of geolocator individuals
from breeding site s that went to nonbreeding region j as:

Wy ~ multinomial(¢p s P, Ny;) (1)

where w_ is a vector indicating the number of recovered
tags from each nonbreeding region, ¢ is a vector con-
taining the annual apparent survival probabilities for in-
dividuals that migrated to each nonbreeding region, ¥ is
a vector indicating the probability that a bird from site s
migrates to each nonbreeding region (with the constraint

J
that 3™, = 1), and P is the probability of recapturing a
=1

geolocator individual given that it survived and returned.
For the model described here, we assume that P is constant
across all sites and years, though this assumption could be
relaxed by including occasion-specific sampling covariates
via a logit-link. We also assume W and ¢ are constant across
years. This assumption could also be relaxed by including
covariates (e.g., sex) and/or allowing temporal variation in
one or both parameters. Our calculation of ¢ also assumes
that mortality can occur anywhere during the annual cycle
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(e.g., on fall migration or winter quarters) and is inde-
pendent of breeding location. Finally, our formulation as-
sumes that geolocator individuals are captured in the year
following tag deployment. This will often be the case in
many studies, though it is possible for recoveries to occur
multiple years after tag deployment. Although we do not
show it here, this situation could be incorporated into the
model by parameterizing the geolocator recovery model
at the individual level and indexing recovery probabilities
based on the appropriate number of survival occasions.

Mark-Recapture Model

Encounter data from marked individuals can be used to
estimate the probability that an individual breeding at
site s survives and returns to breed the next year (D),
which is equivalent to the marginal probability of sur-
vival across the entire nonbreeding area (i.e. the average
nonbreeding survival weighted by the transition prob-
abilities to each region). Apparent survival can be es-
timated using a variety of capture—recapture methods,
for example the standard Cormack-Jolly—Seber
(CJS) model:

Zise ~ Bernoulli(®z;s, 1)

¥is: ~ Bernoulli(ds,z;s,) @
where z_, is the true state (dead or alive) of individual i in
year t and d_, is the probability of detecting an individual
given that it 1s alive and present at site s in year ¢. Again,
it is possible to model heterogeneity in these parameters
by including covariates on detection probability using a
logit-link.

Assuming that the marked and geolocator birds have
the same survival probability, overall survival probability
at each breeding site is equivalent to the average of the
nonbreeding survivals weighted by the proportion of indi-
viduals that spent the nonbreeding season in each region:

111)15 (3)

HM\

Equation (3) allows us to parameterize the CJS model
in terms of the underlying transition matrix ¥ and re-
gional survival probabilities ¢, thereby integrating the two
sub-models.

Simulations

We used simulated data to determine what biological
scenarios yield unbiased estimates of ¥ and ¢ In CMR
models, parameter identifiability can be assessed by simu-
lating capture histories for a very large number of individ-
uals and then quantifying the bias of parameter estimates
from the model (Gimenez et al. 2004). With large sample

C.S.Rushing et al.

sizes, the observed frequencies should be equal to their
expected values (i.e. no sampling error) and thus any
bias in the estimated parameters indicates unidentifiable
parameters.

Identifiability of ¥ and 9,

To determine whether ¥ and ¢, are identifiable using
the model described by Equatlons (1-3), we simulated
geolocator recovery and CMR data assuming 10,000
geolocators deployed at each of 3 breeding sites and 20,000
new individuals added to the CMR data in each year at each
site. These values were chosen to be large enough that es-
timates of ¥ and ¢, were not influenced by sampling error
(Gimenez et al. 2004). For each breeding site, we simulated
random transition probabilities to each of 3 nonbreeding
regions by drawing random values from Uniform (0.2,0.9)
and then scaling to ensure the transition probabilities
summed to 1. Restricting values to 0.2—0.9 ensured that
transition probabilities were not close to 0. Transition
probabilities for each breeding site were then combined to
create the true W matrix for the simulation. We next simu-
lated a random survival probability for each nonbreeding
region by sampling from Uniform(0.2,0.9), which spans
realistic annual survival probabilities for small migratory
birds (Seether 1989). Finally, we used Equations (1-3) to
generate geolocator recoveries and capture histories using
the W matrix and ¢ vector created in the previous steps.
We repeated these steps 500 times to generate a wide range
of transition probabilities and survival probabilities. In all
simulations, we assumed 5 years of CMR data, P = 0.8 and
d=0.6.

For each simulated data set, we estimated the joint like-
lihood of the model using JAGS version 3.3.0 (Plummer
2012) called from program R version 3.6.0 (R Core Team
2016) with package jagsUl version 1.4.2 (Kellner 2016).
Tag recovery probability P, detection probability d, and
nonbreeding survival probabilities ¢ were given unin-
formative Uniform(0,1) priors. Priors for the elements
of W were given uninformative Dirichlet priors to ensure
that the rows of ¥ summed to 1. Capture histories were
summarized using the multi-dimensional array format for
computational efficiency. For all models, we ran 3 chains
for 25,000 iterations each after an adaptation phase of
1,000 iterations and discarding the first 2,000 iterations as
burn-in. Convergence was confirmed through Rhat values
and visual inspections of trace plots.

Denoting the estimated transition probability from site
s to region j for the i simulation (i € 1 — 500) as QZi,S,j, we
measured relative bias in the transition estimates to each
—Uis;)/bis;. To compare the es-
timates from the integrated model to the uncorrected
estimates from the raw geolocator recoveries, we also con-
verted the elements of w, to proportions and measured

. 1/
nonbreeding as 5 (¢,
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relative bias in the connectivity to each nonbreeding re-

gion as 3 Z (W;,s,;

corrected ¢ estlmates would be negatively biased for regions
with low survival (transition probabilities underestimated)
and positively biased for regions with high survival (tran-
sition probabilities overestimated) whereas the corrected
estimates from the integrated model would be unbiased for
all survival estimates. Because “low” and “high” are defined
relative to survival probabilities for other nonbreeding
regions, we scaled the survival probabilities within each
simulation to range from O (for the lowest survival region)
to 1 (for the highest survival region). To test our predic-
tion about the relationship between bias and nonbreeding
survival, we estimated the correlation between bias of each
element of w, - and 1/st ,; and the corresponding relative
survival probablhtles We predicted that the correlation
should be positive for the uncorrected estimates and close
to O for the corrected estimates. Finally, we measured rela-
tive bias for each estimate of (1)], as

WPisj)/Wis;. We predicted that the un-

500 3

500 322 (61 — ¢i) /B

i=1 j=1

In addition to estimating transition and survival probabil-
ities, many tracking studies are interested in quantifying
the strength of migratory connectivity (i.e. the extent to
which individuals and populations remain together be-
tween seasons of the annual cycle; Cohen et al. 2018). The
strength of migratory connectivity, hereafter MC, is a func-
tion of the transition matrix W. Estimating MC from the
uncorrected transition matrix w could therefore result in
biased estimates. However, MC measures the relative links
between breeding and nonbreeding populations and may
not suffer from survivorship bias if transition probabilities
are equally biased for all focal populations (J. Hostetler
personal communication). For each simulated data set i,
we used the calcMC function from the MigConnectivity R
package (Hostetler and Hallworth 2018) to estimate MC
using the “true” transition matrix ¥ (hereafter MC,), the
raw observation matrix w (hereafter MC ), and the es-
timated matrix w from the integrated model (hereafter
MC@ ). We measured relative bias in MC,  and MCJ as
(MC,,-MC,)/MC, , where k equals elther w or ¢, and re-
port the medlan bias of the 500 simulations.

Estimability of ¥

Even if W is intrinsically identifiable, a number of factors
may influence whether estimates of transition probabil-
ities are unbiased under real-world sampling scenarios (i.e.
whether the parameters are estimable; Auger-Méthé et al.
2016). We conducted 3 simulation scenarios to determine
what factors influence the estimability of W:
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Number of geolocators. To investigate how the
number of deployed geolocators and marks influences the
estimability of ¥, we simulated data with sample sizes more
typical of geolocator and CMR studies. Specifically, we
simulated data assuming 10, 20, 30, 40, and 50 geolocators
deployed at each breeding site and 40, 75, 125, 200, and
300 individuals added to the CMR data set in each year. As
in the identifiability simulations, we assumed 3 breeding
and 3 nonbreeding sites, 5 years of CMR data, P = 0.8
and d = 0.6. The number of geolocators and the number
of marked individuals were varied in a factorial design,
resulting in 25 simulation scenarios. For each scenario,
we simulated 500 data sets with randomly generated W
matrices and P, values.

Number of years. The number of years included in
the CMR study may influence the estimability of ¥ by
influencing the precision of the ®_estimates. We simulated
data assuming 4, 6, 8, 10, and 12 years of CMR data. As
for the other simulations, we generated 500 data sets with
random W matrices and q)}. values for each simulation. For
all simulations in this scenario, we assumed 3 breeding and
3 nonbreeding sites, 30 geolocator deployed at each site,
100 individuals added to the CMR data set in each year,
P=08andd=0.6.

Number of sites. Increasing or decreasing the number
of deployment sites and nonbreeding regions could influ-
ence estimability through its influence on the precision of
survival and transition probability estimates. We simu-
lated data assuming 3, 4, 5, 6, and 7 breeding sites and
nonbreeding regions. We generated 500 data sets with
random ¥ matrices and P, values for each simulation and
we assumed 5 years of CMR data, 30 geolocators deployed
at each site, 100 individuals added to the CMR data set in
each year, P = 0.8 and d = 0.6.

For all estimability simulations, model fitting and evalu-
ation was conducted as described above.

Application to Eastern Painted Bunting

Population Data

Painted Buntings are small (~16 g) migratory songbirds
that breed in two distinct populations within the United
States (Herr et al. 2011). The “western” population breeds
primarily in Texas, Oklahoma, Louisiana, and Arkansas
while the “eastern” population is restricted to a narrow
band of habitat along the coasts of Florida, Georgia, South
Carolina, and North Carolina. Monitoring data indicate
that the eastern population has declined steadily over the
past half-century (Sykes Jr. and Holzman 2005), likely due
to habitat loss and the illegal pet trade (Sykes et al. 2007,
2019). Capture of adult males for the pet trade is thought to
be a particular problem in Cuba, where keeping wild birds
as pets has a long history. However, data on the pet trade
are largely anecdotal and the effects of this threat on the

Ornithological Applications 123:1-14 © 2021 American Ornithological Society

220z 1snBNy Zz uo Jesn 801A18S SJIIPIIM PUE Usld “S'N A 92£2€29/0100ENP/Z/EZ | /9101HE/I0PU0D/W0D"dno"olWapeo.)/:SAjY Wolj PaPEojumoq



6 Unbiased estimates of migratory connectivity

demography of Painted Bunting populations have not been
demonstrated (Sykes Jr. et al. 2006).

In 2017 and 2018, we deployed 180 light-level
geolocators (model P50Z11-7-DIP, Migrate Technology
Ltd, Coton, Cambridge, UK) on adult male Painted
Buntings at 6 sites that span the latitudinal distribu-
tion of the eastern population: Carolina Beach State
Park, North Carolina (34.15°N, 77.88°W), Dewee’s Island,
South Carolina (32.84°N, 79.72°W), Kiawah Island, South
Carolina (32.61°N, 80.15°W), Spring Island, South Carolina
(32.33°N, 80.83°W), Little St. Simons, Georgia (31.29°N,
81.34°W), and Little Talbot Island, Florida (30.46°N,
81.42°W). For the purposes of this analysis, we treated the
three South Carolina sites as a single population unit due
to their close proximity. Buntings were trapped at feeders
using mist nets and traps baited with untreated, white
proso millet (Panicum vergi). Geolocators were attached
with a leg-loop harness (Rappole and Tipton 1991). We
recovered 65 geolocators in 2018 and 2019; 61 had viable
data. Recovery effort was similar among all sites. We used
the R package SGAT (Lisovski and Hahn 2012) to generate
location estimates from the raw light data. Twilights were
identified using the function preprocessLight from the R
package TwGeos (Lisovski et al. 2016). We used a light-level
threshold of 1 or 2 for all birds, depending on the amount
of shading in the data. We used functions within SGAT to
determine appropriate zenith angles for each bird during
the stationary breeding period when individuals are at
known locations. To determine appropriate zenith angles
at times of the year when the location is unknown (i.e. the
nonbreeding season), we used the Hill-Ekstrom calibration
method implemented using the function findHEZenith
from the R package TwGeos (Lisovski et al. 2016). For
each individual, we took a weighted median of all gen-
erated locations during the core of the wintering period
(December and January) and used that centroid to define
each individual's wintering location. Individuals were then
assigned to one of the following four regions based on their
estimated wintering centroid: northern Florida, southern
Florida, the Bahamas, or Cuba (Supplemental Material
Table S1).

Survival data for this analysis were collected from 1999
to 2005 as part of a separate study on the demography of
eastern Painted Buntings (Sykes et al. 2019). Buntings were
captured in mist nests situated at feeders filled with millet.
Captured birds were immediately removed from mist
nets, aged (hatch-year, second-year, or after-second-year),
sexed, and banded. Birds were marked with 3 colored
plastic leg bands and one U.S. Geological Survey (USGS)
numbered aluminum leg band arranged 2 on each leg, in
unique 4-band combinations for individual identification.
Unbanded individuals were marked through 2003. In sub-
sequent years, missing or faded color-bands were replaced
on individuals still retaining the USGS metal bands, when
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possible. Banded buntings were re-sighted at feeders during
observation sessions starting in 2001. Observation sessions
were conducted once annually during the breeding season
at each site. In years when birds were banded (2001-2003),
observation sessions were conducted at least one day be-
fore banding sessions. Feeders were arranged so all open
feeding ports were visible by observers using 20-60x
zoom spotting scopes, ~10 m away from the feeders (see
Sykes et al. 2019 for further details). For this analysis, we
included only data from males originally banded as adults
(either second-year or after-second-year; n = 402). We fur-
ther included only banding locations within 20 km of our
geolocator deployment sites to ensure that survival esti-
mates from the re-sight data corresponded as closely as
possible to the geolocator study (Supplemental Material
Table S2).

Geolocator recovery and CMR data were used to par-
ameterize the integrated model. Mark re-sight data from
individual feeders (Supplemental Material Table S2) were
pooled to estimate a single survival probability for each
region (North Carolina, South Carolina, Georgia, and
Florida), forming the basis for implementing Equation (3)
in this analysis. Thus, we did not model annual variation
in survival and assumed that the time-averaged survival
estimates from the mark-re-sight data are representative
of the survival probabilities experienced by birds in the
geolocator study. Following Sykes et al. (2019), we included
site-specific effects of human development within 700 m
and feeder-level random effects on survival. We also in-
cluded feeder-specific effort covariates in the detection
model (Sykes et al. 2019). Using apparent survival esti-
mates, we estimated weighted transition probabilities from
each breeding region to each wintering region. To examine
differences in biased and unbiased transition probabilities,
we calculated unweighted (raw) transition probabilities by
dividing the number of geolocators recovered at a breeding
site from a single wintering region by the total number of
geolocators recovered at a site from any wintering region.
We used uninformative priors for all parameters. Posterior
distributions were based on 3 chains, run for 20,000 it-
erations each after discarding the first 2,500 iterations
as burn-in. Model convergence was assessed using R-hat
values (Brooks and Gelman 1998) and by visual inspection
of trace plots.

RESULTS

Simulation

Both W and ¢. were identifiable using the integrated model
(Figure 1). As predicted, the correlation between relative
nonbreeding survival and the bias in the uncorrected es-
timates of W was positive (0.66), signifying that the tran-
sition probabilities for lowest-survival regions were
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Uncorrected Integrated model

1.5
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-1.04

Low Intermediate High Low Intermediate High

Relative nonbreeding survival

FIGURE 1. Bias in the estimated transition probabilities W from
500 identifiability simulations. In each simulation, individuals mi-
grate to one of three nonbreeding regions (ranked within each
simulation as low, intermediate, or high), which differ in survival
probability. Orange points show bias in the estimated transition
probabilities as a function of relative survival (ranging from 0 to
1; see text for details) for each nonbreeding region based on the
uncorrected geolocator recoveries. Blue points show bias for the
same transition probabilities but estimated using the integrated
model. Box-and-whisker plots summarize bias for nonbreeding
regions categorized as the low, medium, or high survival region
in each simulation, with the middle line showing the median,
bottom and top hinges showing the 25th and 75th quantiles, and
the top and bottom whiskers are 1.5 times the distance between
the 25th and 75th quantiles. A small jitter has been added to aid
visualization of the low and high survival points.

underestimated and overestimated for the highest-survival
regions (Figure 1). This structural bias was substantial for
the extreme low and high-survival regions, under- and
over-estimating ‘¥, by nearly 45%, respectively. Transition
probabilities to intermediate survival regions could be
either overestimated or underestimated depending on
whether survival was greater than or less than the average
survival probability across all regions, respectively (Figure
1). In contrast, the integrated model returned unbiased es-
timates of W regardless of the underlying survival probabil-
ities (correlation = —0.03), leading to the minimal relative
bias of <1% even at the most extreme low and high-survival
sites (Figure 1). Estimates of ¢, from the integrated model
were also minimally biased (0.017). Estimates of MC
showed no bias when using the transition matrix from
the integrated model (median relative bias <0.0001) and a
small negative bias for the uncorrected estimates (median
relative bias = —0.04). Although bias in MC  was small on
average, these estimates showed much larger variation than
the M C;p\ estimates (Figure 2). Root-mean-square error of
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FIGURE 2. Relationship between the true and estimated
strength of migratory connectivity (MC) for the 500 identifiability
simulations. Estimated MC are based on either the uncorrected
transition probabilities (orange points) or the transition prob-
abilities from the integrated model (blue points). The black line
indicates a 1:1 relationship between the true and estimated MC
values.

the MC  estimates was 0.03, nearly 10 times higher than
the root-mean-square error of the MC-~ estimates (0.004).

Estimability simulations indicated that, under more
realistic sample sizes, some bias remains in the estimates
of ¥ and ¢, from the integrated model, though the in-
tegrated model greatly reduced bias in W relative to the
uncorrected estimates. Across all scenarios, the relative
bias of ¥, for the extreme low and high-survival regions
was generally <10% for the integrated model, much lower
than the approximately 40—50% of the uncorrected esti-
mates. Even with only 10 geolocators deployed at each
site and 75 individuals per year added to the capture—
recapture data (Figure 3), the correlation between bias
and nonbreeding survival was much lower in the inte-
grated model (0.25, 0.23-0.27) relative to the uncor-
rected estimates (0.63, 0.60—0.67). Deploying additional
geolocators reduced bias substantially, whereas adding
additional individuals to the CMR data set had less influ-
ence on bias (Table 1). Bias in the integrated model gen-
erally decreased as both the length of the CMR study and
the number of breeding sites and nonbreeding regions
increased (see Supplemental Material Appendix S2),
though the decreases in bias were small and the value
of adding more years/sites generally decreased as more
were added. Estimates of ¢ were positively biased by ap-
proximately 2—5% under all estimability scenarios. Bias
in ¢, generally decreased as more marks (Table 1) and
more years of CMR data were included in the analysis but
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Uncorrected Integrated model

Bias

Low Intermediate High Low Intermediate High

Relative nonbreeding survival

FIGURE 3. Bias in the estimated transition probabilities W from 500 simulations in which 10 geolocators are deployed at each site and
75 marked individuals are added to the capture-recapture model in each year. In each simulation, individuals migrate to one of three
nonbreeding regions (ranked within each simulation as low, intermediate, or high), which differ in survival probability. Orange points
show bias in the estimated transition probabilities as a function of relative survival (ranging from 0 to 1; see text for details) for each
nonbreeding region based on the uncorrected geolocator recoveries. Blue points show bias for the same transition probabilities but
estimated using the integrated model. Box-and-whisker plots summarize bias for nonbreeding regions categorized as the low, me-
dium, or high survival region in each simulation, with the middle line showing the median, bottom and top hinges showing the 25th
and 75th quantiles, and the top and bottom whiskers are 1.5 times the distance between the 25th and 75th quantiles. A small jitter has
been added to aid visualization of the low and high survival points.

TABLE 1. Estimability of transition probabilities and nonbreeding survival probabilities as a function of the number of marks
and geolocators deployed. Correlations are the mean and 95% confidence interval of the correlation between bias and relative
nonbreeding survival across the 500 simulated data sets. The final column is the mean bias in the estimated survival probabilities for
each nonbreeding region, denoted ¢,

Number of marks Number of archival tags Correlation-integrated model Correlation-uncorrected Bias in ¢,
40 10 0.287 (0.264-0.310) 0.619 (0.591-0.647) 0.045
40 20 0.246 (0.225-0.268) 0.649 (0.625-0.673) 0.034
40 30 0.206 (0.186-0.226) 0.626 (0.604-0.648) 0.037
40 40 0.197 (0.177-0.217) 0.614 (0.593-0.634) 0.039
40 50 0.205 (0.185-0.225) 0.635 (0.615-0.655) 0.037
75 10 0.252(0.229-0.274) 0.631 (0.603-0.659) 0.046
75 20 0.269 (0.249-0.290) 0.648 (0.624-0.672) 0.044
75 30 0.216 (0.196-0.236) 0.652 (0.628-0.675) 0.039
75 40 0.203 (0.182-0.224) 0.619 (0.598-0.639) 0.038
75 50 0.193(0.173-0.213) 0.638 (0.618-0.659) 0.036
125 10 0.283 (0.261-0.305) 0.647 (0.618-0.676) 0.051
125 20 0.239(0.217-0.261) 0.635 (0.611-0.660) 0.042
125 30 0.191 (0.172-0.211) 0.634 (0.613-0.656) 0.032
125 40 0.180 (0.160-0.199) 0.615 (0.594-0.636) 0.033
125 50 0.175 (0.156-0.194) 0.614 (0.593-0.634) 0.037
200 10 0.243 (0.221-0.264) 0.613 (0.584-0.642) 0.047
200 20 0.235(0.214-0.256) 0.637 (0.614-0.660) 0.042
200 30 0.201 (0.181-0.221) 0.629 (0.608-0.651) 0.038
200 40 0.156 (0.137-0.176) 0.612 (0.591-0.633) 0.039
200 50 0.164 (0.145-0.183) 0.616 (0.596-0.636) 0.028
300 10 0.240 (0.217-0.263) 0.582 (0.554.-0.610) 0.043
300 20 0.218 (0.198-0.238) 0.605 (0.581-0.629) 0.043
300 30 0.199 (0.179-0.219) 0.632(0.610 -0.653) 0.040
300 40 0.178 (0.158-0.198) 0.649 (0.628-0.670) 0.038
300 50 0.159(0.139-0.178) 0.636 (0.616-0.657) 0.036
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was not sensitive to the number of sites (Supplemental
Material Appendix S2).

Painted Bunting Survival and Migratory Connectivity
Estimates for apparent annual survival within breeding re-
gions were similar for Florida (mean: 0.68, credible interval
(CI): 0.58-0.76), Georgia (0.68, CI: 0.59—0.76), and South
Carolina (0.66, CI: 0.58-0.74), but were notably lower in
North Carolina (0.6, CI: 0.48—0.71). Of the 180 geolocators
deployed in 2017 and 2018, we recovered 61 geolocators
with usable data (Supplemental Material Table S1). Raw
transition probabilities estimated from these geolocators
suggested that Painted Buntings breeding in Florida was
relatively evenly distributed among the 4 nonbreeding re-
gions, birds from Georgia and South Carolina were most
likely to winter in south Florida, and birds from North
Carolina were most likely to winter in Cuba (Table 2). No
geolocators were recovered in North Carolina from birds
that had wintered in north or south Florida, and therefore
transition probabilities to these wintering regions were es-
timated to be zero based on the raw recoveries.

Results from the integrated model suggest that the winter
region affected annual survival. Survival was comparable
for buntings wintering in north Florida (0.72, CI: 0.4—
0.98), south Florida (0.75, CI: 0.49-0.98), and the Bahamas
(0.72, CI: 0.39-0.98; Figure 4). Male buntings wintering
in Cuba, however, had measurably lower annual survival
probabilities (0.57, CI: 0.37-0.9). Due to regional survival
variation in nonbreeding survival, transition probabilities
from the integrated model differed from the raw estimates
in important ways (Table 2). In particular, the integrated
model suggested that birds breeding in Georgia and South
Carolina breeding populations were less likely to winter
in south Florida and more likely to winter in Cuba than
suggested by the raw recovery data. These differences are
consistent with over-estimation of connectivity to south
Florida due to the high survival in that region and under-
estimation of connectivity to Cuba due to the low survival
there. For the North Carolina population, the integrated
model actually indicated lower connectivity to Cuba than
the raw data. This unintuitive result occurred because the
integrated model estimated low but non-zero connectivity
to north and south Florida despite no geolocator recoveries
from these regions. In total, the estimated connectivity
between North Carolina and Florida was approximately
15-20%, which more than offset differences between the
integrated and raw connectivity estimates to Cuba.

Bahamas
0.289 (0.124-0.498) 0.312
0.252 (0.098-0.459) 0.263
0.123 (0.024-0.308) 0.095
0.199 (0.023-0.557) 0.200

Cuba
0.264 (0.1-0.472) 0.250
0.207 (0.06-0.409) 0.158
0.281 (0.11-0.488) 0.238
0.599 (0.22-0.874) 0.800

Transition to

S. Florida
0.202 (0.061-0.397) 0.188
0.324 (0.152-0.536) 0.368
0.327 (0.16-0.549) 0.381
0.094 (0.002-0.363) 0.000

N. Florida

0.245 (0.091-0.446) 0.250
0.217 (0.074-0.417) 0.211
0.269 (0.113-0.476) 0.286
0.108 (0.003-0.442) 0.000

S. Carolina
N. Carolina

Florida
Georgia

DISCUSSION

Our simulations confirm that estimating migratory tran-
sition probabilities from observed geolocator recoveries
produces biased estimates when survival probabilities

TABLE 2. Transition probabilities from breeding sites to wintering sites, estimated from geolocators recovered on the breeding grounds in the 2017 and 2018 field seasons.
Bolded values are the posterior mean of W from the integrated models, with estimated 95% credible intervals in parentheses. Non-bolded values are the equivalent transition

probabilities estimated from the raw recovery data. Note that the raw W estimates are point estimates and do not provide any measure of uncertainty

Transition From
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FIGURE 4. Estimated transition probabilities and nonbreeding survival of southeastern Painted Buntings (Passerina ciris) from (A)
Kiawah Island and Spring Island, SC, (B) Wilmington, NC, (C) Little St. Simons Island, GA, and (D) Big Talbot Island State Park, FL. Red
dots indicate geolocator deployment sites and grey dots indicate sites where mark-re-sight data were collected. Estimated survival
probabilities for each of the four nonbreeding regions are shown in panel (A). Values at the base of each arrow are the estimated tran-
sition probabilities from the integrated model for each breeding site and nonbreeding region. Arrows are color-coded by nonbreeding
region and sized relative to the estimated transition probabilities.

differ among nonbreeding regions. Given that regional 2016, Healy et al. 2017, Kramer et al. 2018), survivorship

variation in nonbreeding survival is the rule rather than bias is likely to be a pervasive issue for studies using arch-
the exception for most migratory species (Hewson et al. ival tracking devices. As we demonstrate, the integration
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of a probabilistic geolocator recovery model with mark-
recapture data can reduce or eliminate survivorship bias,
providing a practical approach for strengthening infer-
ences about migratory connectivity.

The use of archival geolocators has grown dramat-
ically over the past decade, with over 120 publications
from 2010 to 2017 (McKinnon and Love 2018), motiv-
ating multiple research teams to investigate the effects of
these geolocators on the survival of tracked individuals
(Costantini and Mpgller 2013, Peterson et al. 2015, Brlik
et al. 2020). However, we are not aware of any study that
has been designed to account for survivorship bias on the
interpretation of data from archival geolocators. Our re-
sults indicate that assuming observed geolocator recov-
eries accurately reflect the underlying migration patterns
is potentially problematic and in extreme cases could
lead to false inferences about which nonbreeding regions
are most important for specific breeding populations.
Reliance on raw recovery data may be especially problem-
atic for archival tracking studies based on small sample
sizes of deployed geolocators. Mortality or dispersal
could result in no individuals being observed to migrate
to certain nonbreeding regions. This was the case for our
sample of Painted Buntings from North Carolina, which
included no birds wintering in north or south Florida. In
this case, the true transition probabilities are unlikely to
be 0; instead, these zeros are probably the result of sam-
pling variation with only a small number of tracked birds.
Defining an explicit geolocator recovery model that treats
the observed data as realizations of one or more stochastic
process or sampling models provides a means to account
for sampling variation and estimate the underlying process
model parameters, even without integrating the survival
data in the model.

Integrating geolocator recovery and survival data en-
ables novel insights that neither source of information
alone can provide. Our integrated model provided com-
pelling evidence that survival probabilities of Painted
Buntings wintering in Cuba may be 15-20% lower than
for birds that winter in other parts of the range. Although
the nonbreeding survival rates had high uncertainty, these
results are consistent with the hypothesis that Painted
Buntings migrating to Cuba face higher mortality than in-
dividuals wintering elsewhere in the range. One explan-
ation for this result is that Painted Buntings in Cuba are at
higher risk of capture as part of the illegal pet trade than
birds that winter in Florida or the Bahamas. Reliable es-
timates of the number of buntings captured in Cuba or
Florida are not available but anecdotal reports have docu-
mented localized trapping of as many as 700 buntings over
3 days in Cuba (Sykes Jr. et al. 2006, 2007). Additionally, of
the 80 geolocators deployed in 2018 as part of this study, at
least three are known to have been captured in Cuba and
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Sykes et al. (2007) confirmed 19 buntings banded in the
US and captured in Cuba. Of course, other explanations
could explain our results, including longer migration dis-
tances required to reach Cuba or differences in habitat
loss throughout the winter range. Our results nonetheless
demonstrate how integrating tracking and survival data
can lead to deeper insights about the dynamics of migra-
tory species.

A common objective of recent tracking studies is to
estimate the strength of migratory connectivity (Cohen
et al. 2018), an index of the extent that individuals and
populations remain together between seasons of the an-
nual cycle. Even when the underlying transition prob-
abilities are biased due to differential survival, our
simulations indicate that MC is largely unbiased when
derived from observed geolocator recoveries. This result
is not unexpected because the MC metric is based on the
relative links between breeding and nonbreeding popu-
lations, rather than the absolute transition probabilities.
In other words, transition probabilities to low-survival
nonbreeding regions, estimated from the raw recoveries,
will be underestimated for all breeding sites and as a re-
sult, the correlation of distances between breeding and
nonbreeding populations will remain unbiased. These
results suggest that, on average, published estimates of
MC based on archival geolocators should be considered
unbiased. However, we found that MC estimates based
on the integrated model were, on average, more precise,
that is much closer to the true MC value, than estimates
based on raw recovery data. This result is likely due to
explicitly accounting for process and sampling uncer-
tainty in the geolocator recovery model. By viewing the
realized recoveries as stochastic processes, the integrated
model attempts to separate the expected transition and
survival probabilities from the process and sampling
noise inherent to the data collection process. Reducing
the influence of sampling and process uncertainty in the
W estimates in turn reduces noise in the estimates of MC
compared to estimates based on the raw geolocator re-
coveries. Future work that allows researchers to directly
account for survivorship bias and produce more accurate
estimates of MC would be beneficial.

Our integrated approach permits unbiased estimates of
nonbreeding survival and transition probabilities for sea-
sonal ranges, but makes several assumptions. First, we as-
sume that nonbreeding survival is independent of breeding
origin. If nonbreeding survival differs among breeding
sites, because for example, individuals migrate different
distances, then site-specific transition probabilities will
be confounded with variation in site-specific nonbreeding
survival. Second, we assume that geolocator recovery
probability is independent of nonbreeding location. If the
probability of recovering geolocators (conditional on an
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individual surviving and returning to the deployment site)
is influenced by events outside the breeding season, this
heterogeneity would incorrectly be interpreted as hetero-
geneity in survival. Third, individuals tracked using archival
geolocators are assumed to have the same survival prob-
ability as individuals in the capture-recapture data set.
Recent meta-analyses of light-level geolocator studies found
that these geolocators can have a small, negative effect
on survival, especially for small and highly aerial species
(Costantini and Mgller 2013, Brlik et al. 2020). However,
geolocator effects should not bias transition probability es-
timates as long as they are independent of where individuals
overwinter. In this case, the lower return rate of geolocator
individuals will be reflected in lower geolocator recovery
probabilities but other parameters should be unbiased.
Fourth, integrating geolocator recovery and capture-re-
capture models assumes independence of the two data sets.
Strictly speaking, if some individuals are shared between
the two data sets, variance parameters in the model will be
underestimated, though small violations of this assumption
are unlikely to affect inference (Abadi et al. 2010). Fifth, we
assumed no uncertainty in the nonbreeding region of each
tracked individual. Some archival geolocators, particularly
light-level geolocators, have substantial uncertainty and
even with large nonbreeding regions, some individuals may
not be assigned to regions with 100% accuracy. Uncertainty
in nonbreeding regions could be incorporated into the
analysis by treating nonbreeding assignments as categor-
ical random variables with probabilities estimated from
the raw tracking data, though this modification is beyond
the scope of this paper. Finally, assumptions of the chosen
survival model also apply to the integrated geolocator
recovery model.

Prior to the development of miniaturized archival
tracking devices, migratory animals could not be tracked
across their entire annual cycle. This technology has cre-
ated novel research opportunities for thousands of spe-
cies, but data from archival geolocators must be carefully
interpreted. Discussions about inferences from archival
geolocators have mainly focused on whether geolocators
influence the fitness or behavior of tracked individuals
(Arlt et al. 2013, Costantini and Meller 2013, Brlik et al.
2020). Although these issues are important, the effects of
survivorship bias on inference from archival geolocators
have not been widely acknowledged. Our results dem-
onstrate that survivorship bias, a potentially ubiquitous
outcome of archival geolocators, can be reduced or elim-
inated if data for estimating survival is also available for
each deployment site. Thanks to the focus on quantifying
geolocator effects, many tracking studies are likely already
collecting mark-recapture or mark-re-sight data that
could be used to fit the integrated model presented here.
In cases where researchers are designing new tracking

C.S. Rushing et al.

studies, the collection of these auxiliary survival data
should be prioritized both to measure geolocator effects
and obtain accurate transition probabilities and regional
nonbreeding survival probabilities. Although estimation
of MC appears to be relatively robust to variation in sur-
vival, transition probabilities are not. Given that little is
known about regional survival in most species, inferences
about migration patterns from archival patterns should be
interpreted very cautiously unless measures are taken to
correct for survivorship bias. Improving inferences from
archival geolocators through proper data collection and
further development of integrated models will enable this
technology to further transform the study of small, migra-
tory organisms.

SUPPLEMENTAL MATERIAL

Supplemental material is available online at Ornithological
Applications online.
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