

Variability of life history parameters and productivity in elasmobranchs and other commercially exploited aquatic species

Enric Cortés

CITES Secretariat - Consultant

Outline of presentation

- Brief background on life history of cartilaginous and bony fishes
- Variability in life history traits of elasmobranch and other fishes
- Comparison of life history traits of elasmobranchs and other fishes
- Identifying vulnerable aquatic species and decline thresholds
- Other measures of productivity and vulnerability, and associated management reference points, used in fisheries
- Conclusions and challenges

General life history of elasmobranchs vs. other commercially exploited fishes

"K-selected"

- Slow growth
- Late age at maturity and first reproduction
- Low fecundity, long gestation periods, low frequency of births, production of well-developed offspring

- Low natural mortality
- Long lifespan

"r-selected"

- Fast growth
- Early age at maturity and first reproduction
- High fecundity, production of eggs

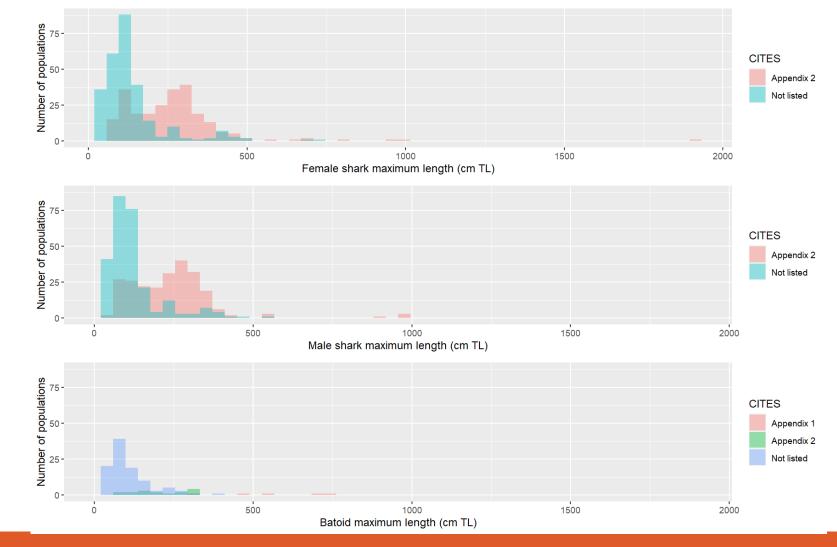
- High natural mortality
- High recruitment
- Short lifespan

Data sources

Taxon	Life history traits	n
Sharks	Cortes (2000) augmented	603
	Thorson et al. (2023)	
Batoids	Barrowclift et al. (2003)	150
Teleosts	Thorson et al. (2023)	2041
Taxon	Productivity	n
Sharks	Cortes (2016) augmented	101
	Gravel et al. (2024)	67
	Finucci et al. (2024)	61
Batoids	Barrowclift et al. (2003)	85
	Gravel et al. (2024)	26
	Finucci et al. (2024)	24
Teleosts	Gravel et al. (2024)	129
Marine mammals	Finucci et al. (2024)	21

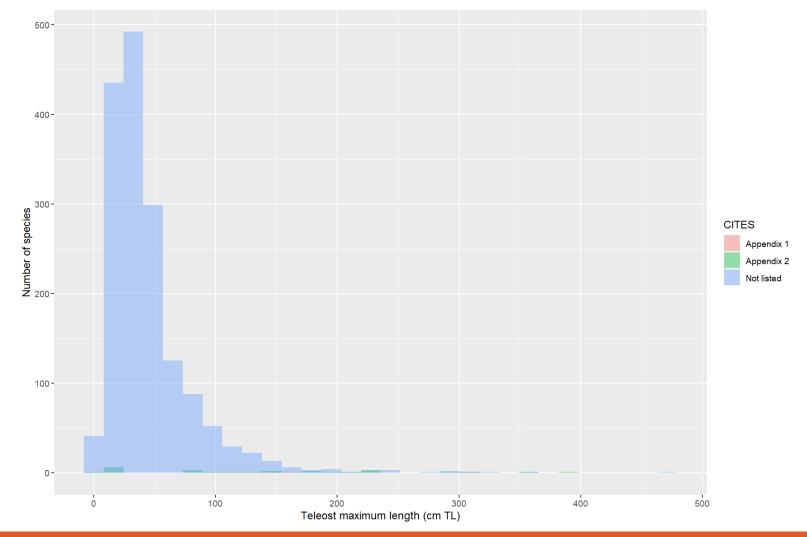
Some definitions

Life history trait	Abbreviation	Unit	Meaning
Growth completion rate	k	/ year	A constant that describes how quickly the maximum length is reached.
			Also referred to as the growth coefficient from the von Bertalanffy growth function
Age at maturity	t .	years	The age at which (50% of) individuals become mature
rige at matanty	L _{mat}	years	
Maximum age	t _{max}	years	The maximum age of individuals in a population
Annual fecundity	fecundity	pups / year	The number of pups produced by a female in a year
Natural mortality rate	Μ	/ year	The rate at which animals die in a year
Theoretical maximum length	L _{inf}	cm total length	h The theoretical maximum mean length of a population
Length at maturity	L _{mat}	cm total length	h The length at which (50% of) individuals become mature
Intrinsic rate of increase	r _{max}	/ year	The rate at which a population increases in a year. A direct measure of productivity
		-	



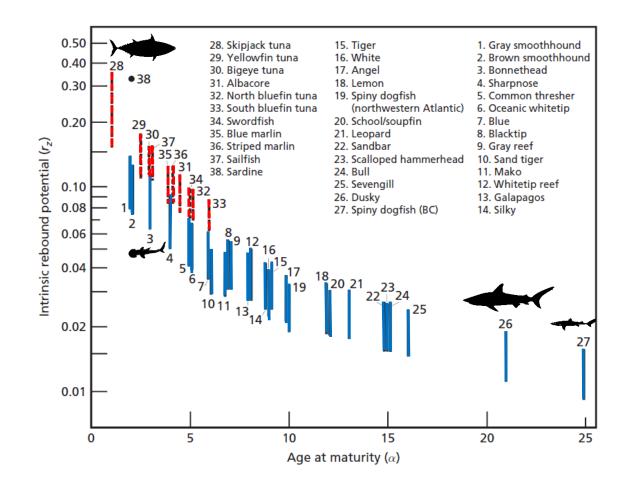
Variability in life history traits of sharks and batoids

Life history trait	Minimum	Species	Maximum	Species	Life history trait	Minimum	Species	Maximum	Species	Life history trait	Minimum	Species	Maximum	Species
Sharks					Batoids					Teleosts				
Total length	22 cm	Pigmy shark	1900 cm	Whale shark	Total length	26 cm	Chilean round ray	730 cm	Longcomb sawfish					Indo-Pacific blue
Litter size	1 pup	Gulper shark	300 pups	Whale shark		22		700	Giant oceanic	Total length	3.1 cm	Emerald clingfish		marlin
Gestation period	4-5 months	Bonnethead	3.5 years	Frilled shark	Disk width	26 cm	Dwarf stingray Brazilian large-	700 cm	manta ray	Length at maturity	1.6 cm	Sinaripan		Indo-Pacific blue marlin
					Litter size	1 pup		167 eggs	Thornback ray					Silver-stripe
Breeding frequency	1 year	Many	3 years	Several	Gestation period	3 months	Freshwater whipray	y 15 months	Bottlenose skate	k (growth coefficient)	0.03 / yr	Beluga		round herring
k (growth coefficient)	0.01 / yr	Blackbelly lanternshark	1.34 / yr	Australian sharpnose shark	Breeding frequency	0.074 years	s Big skate	4.5 years	Reef manta ray	Age at maturity	0.2 years	Cyprinid	24.8 years	Beluga
Age at maturity	1 year	Australian sharpnose shark	36 years	Spiny dogfish	k (growth coefficient)	0.02 / yr	Graytail skate	0.54 / yr	Roughskin skate	Maximum age	0.6 years	Silver-stripe round herring		s Rougheye rockfish
Maximum ana	4 1/00/00	Australian	81 vooro	Shiny dogfich	Age at maturity	1 year	Roger's round ray	25 years	Roughtail skate	L				
Maximum age	4 years	sharpnose shark	81 years	Spiny dogfish	Maximum age	3.5 years	Bleeker's whipray	50 years	Common skate					



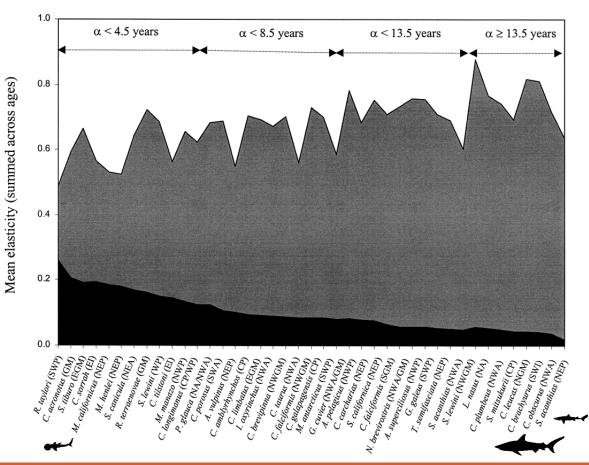
Length-frequency distributions of sharks and batoids

Length-frequency distributions of ray-finned fishes


Some examples of life history variability in sharks and teleosts

Fecundity	Offspring size	Body size	Growth	Lifespan	Example		
high	small	mid to large	mid to slow	substantial	Blue shark		
low	large	large	slow	high	Dusky shark		<
low	small*	small to mid	fast	low to mid	Atlantic sharpnose shark	-	
1000	Smail		1031				
low	small	small	slow	high	Spiny dogfish		
very high	very small	small	slow	high	Rougheye rockfish		
very high	very small	large	mid to slow	substantial	Atlantic bluefin tuna	\bigstar	►(
very high	very small	very small	very fast	very low	White sardinella		

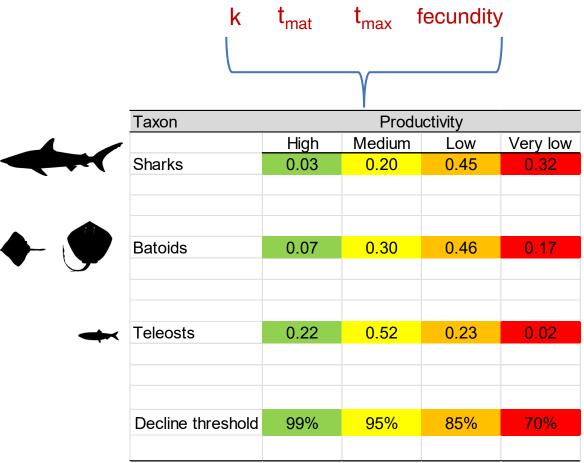
From Cortes (2000) and data from Thorson et al. (2023)


Comparison of life history traits of elasmobranchs and other fishes: previous studies showing continuum of productivity values for sharks and teleosts

Modified from Au et al. (2008): shark species in blue; teleosts in red

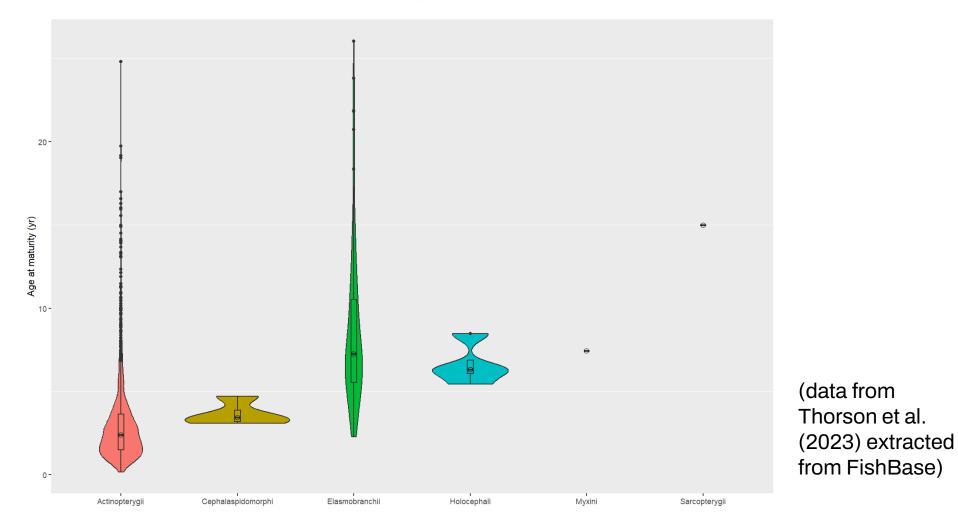
Comparison of life history traits of elasmobranchs and other fishes: previous studies showing continuum of productivity values for sharks

■ Fertility ■ Juvenile survival □ Adult survival


Identifying vulnerable aquatic species

Using Musick's (1999) classification as an example

		Pro	ductivity	
	High	Medium	Low	Very low
k (yr ⁻¹)	>0.30	0.16-0.30	0.05-0.15	<0.05
t _{mat} (yr)	<1 yr	2-4 yr	5-10 yr	>10 yr
t _{max} (yr)	1-3 yr	4-10 yr	11-30 yr	>30 yr
fecundity (yr ⁻¹)	>10000	100-1000	10-99	<10
r _{max} (yr ⁻¹)	>0.50	0.16-0.50	0.05-0.15	<0.05
Decline threshold	99%	95%	85%	70%

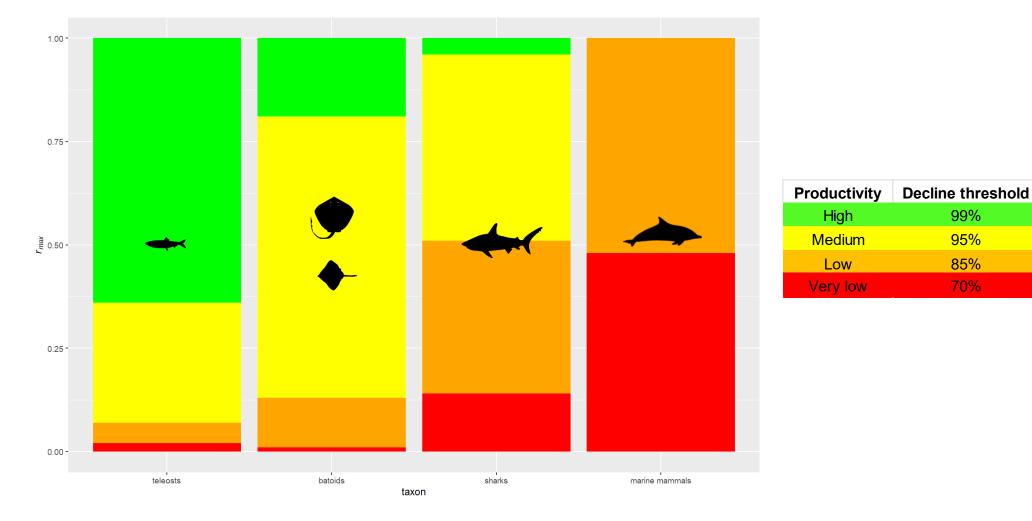


Identifying vulnerable aquatic species based on life history traits (all studies combined)

Example distributions of life history traits (age at maturity) for classes of fishes

Identifying vulnerable aquatic species based on r_{max} (all studies combined)

	Taxon		Produ	ctivity	
4		High	Medium	Low	Very low
	Sharks	0.04	0.45	0.37	0.14
	Batoids	0.19	0.68	0.12	0.01
	Talaasta	0.04	0.00	0.05	0.00
	Teleosts	0.64	0.29	0.05	0.02
	Marine mammals	0.00	0.00	0.52	0.48
•					
	Decline threshold	99%	95%	85%	70%

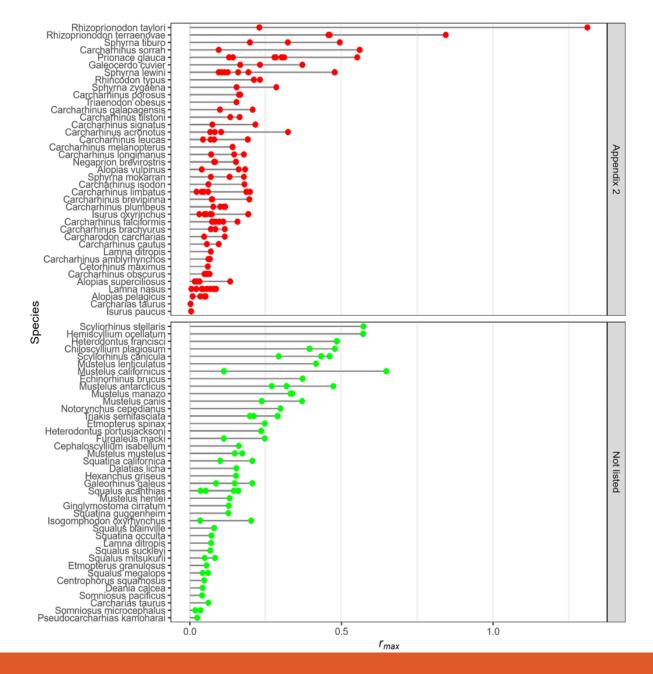

Distributions of productivity (r_{max}) for sharks, skates, rays, chimaeras, teleosts, and marine mammals

(data from Cortes (2016) augmented, Barrowclift et al. (2023), Gravel et al. (2024), and Finucci et al. (2024))

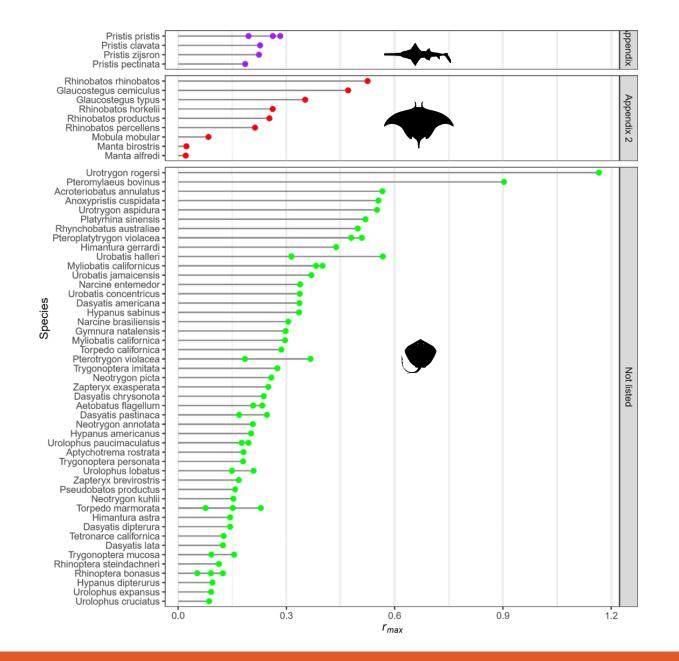
Classification of productivity into four categories (high, medium, low, and very low) according to the criteria for r_{max} from Musick (1999) for several taxa and the corresponding potential decline thresholds

99%

95%

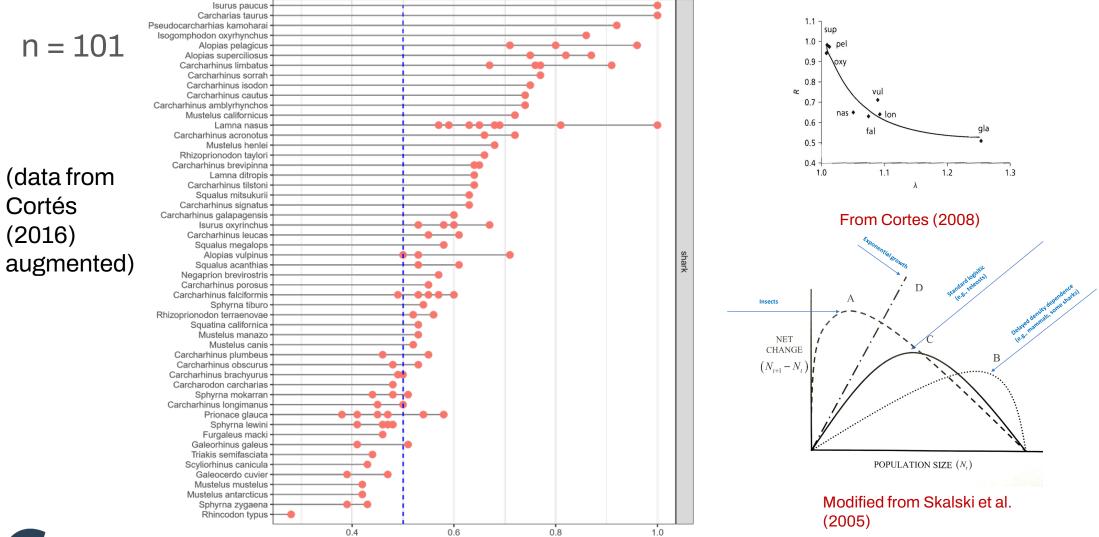

85%

70%



Productivity (r_{max}) for sharks (data from multiple studies) according to CITES listing

n = 227



Productivity (r_{max}) for batoids (data from multiple studies) according to CITES listing

n = 78

Position of the inflection point of population growth curves (R) for sharks

Conclusions and challenges

- Elasmobranchs exhibit very wide variability in life history traits and associated productivity, which translates into a continuum of values
- While elasmobranchs tend to be less productive, there is considerable overlap with teleosts, in particular between skates and teleosts
- Based on recent studies and using Musick's (1999) productivity classification, only a small proportion of batoids would fall in the "low" and "very low" categories and about half of sharks would fall in those categories
- Other measures of productivity/vulnerability used in fisheries also show a continuum of values determined by the life history traits of each population
- Since "one-size-does-not-fit-all" it is challenging to group all sharks and rays into a single entity for management purposes

Additional slides

Outline of presentation (2)

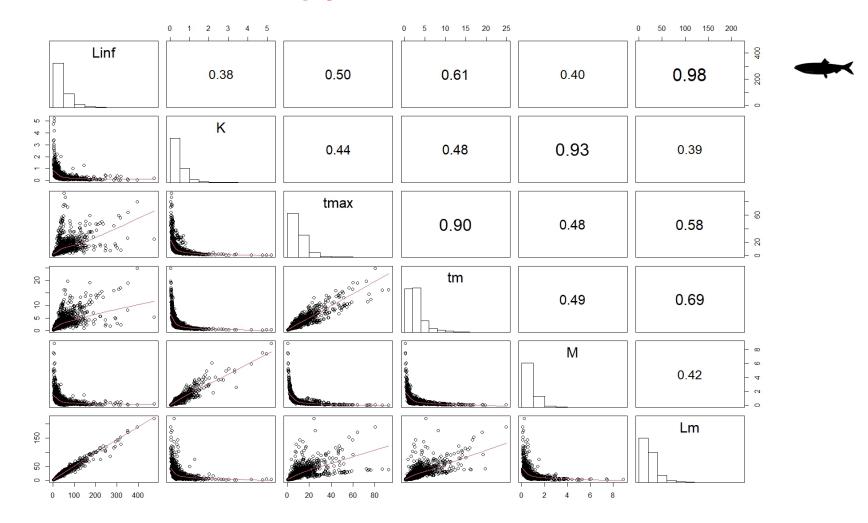
- Brief background on life history of cartilaginous and bony fishes
- Variability in life history traits of elasmobranch and other fishes
- Factors affecting the estimates of life history traits and parameters
- Life history patterns and strategies of elasmobranchs and bony fishes
- Comparison of life history traits of elasmobranchs and other fishes
- Identifying vulnerable aquatic species
- Decline thresholds
- Other measures of productivity and vulnerability, and associated management reference points in elasmobranchs
- Conclusions and challenges

Factors affecting the estimates of life history traits

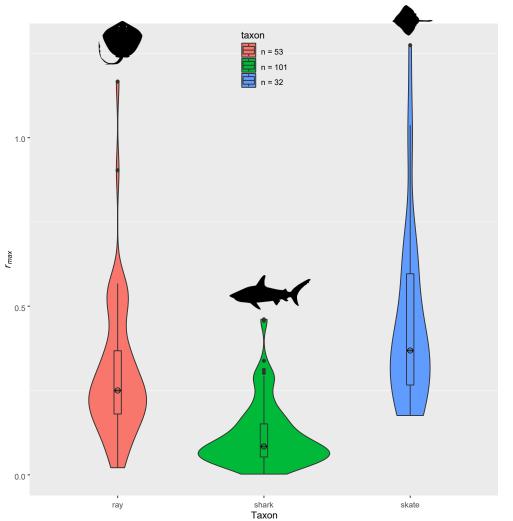
- Most widely accepted views of the life history of elasmobranchs come from a small subset of species globally
- There is inherent uncertainty associated with the measurement and estimation of life history traits, which affects their comparison
- Main factors that can affect this comparison include:
 - Sampling bias, gear selectivity
 - Measurement technique
 - Analytical method
 - Density-dependent responses
 - Geographic variability and phenotypic plasticity
 - Species distribution
 - Degree of research effort

Life history patterns of elasmobranchs (and bony fishes)

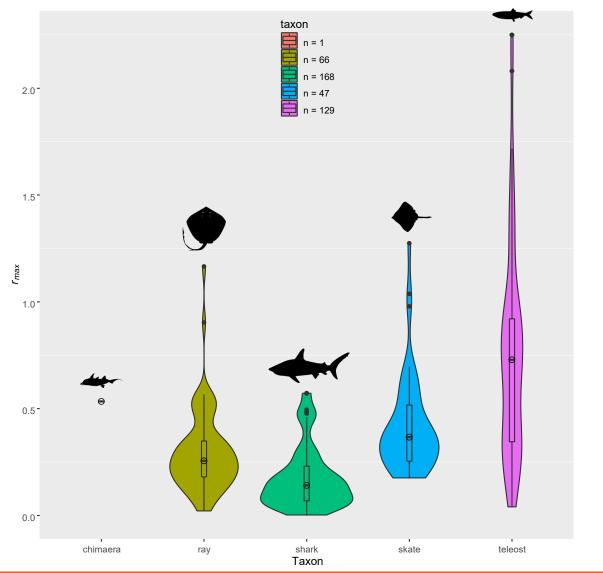
- 1. The bigger you are, the more offspring you have
- 2. The bigger you are, the larger your offspring are
- 3. The more offspring you have, the smaller their relative size
- 4. The faster you grow, the smaller your maximum size and the shorter your lifespan
- 5. The shorter your lifespan, the earlier you must breed
- 6. The quicker you die (high natural mortality), the shorter your lifespan



Scatter plot matrix of life history parameters of sharks and batoids



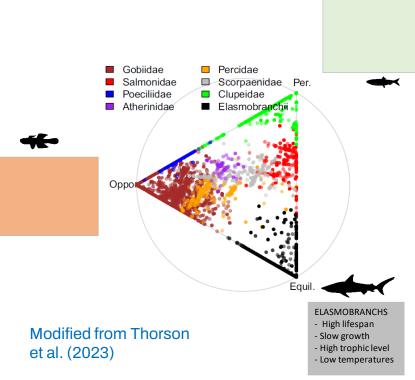
Scatter plot matrix of life history parameters of teleosts


Distributions of productivity (r_{max}) for sharks, skates, and rays

(data from Cortes (2016) augmented and Barrowclift et al. (2023))

Distributions of productivity (r_{max}) for sharks, skates, rays, chimaeras, and teleosts

(data from Cortes (2016) augmented, Barrowclift et al. (2023), and Gravel et al. (2024))


Other measures of productivity and vulnerability, and associated management reference points

- r_{max}: intrinsic rate of increase (maximum population growth rate in ideal conditions after exploitation has ceased)
- Maximum lifetime reproductive rate (): number of spawners produced by each spawner over its entire lifetime (ranges from 1 to infinity)
- Steepness: ratio between recruitment when spawning stock size has been reduced to 20% of virgin conditions and recruitment in virgin conditions. Another measure of productivity used in fisheries, ranges from 0.2 to 1, uses in its computation (the lower, the less exploitation permitted)
- SPR_{MER}: analogous to steepness (inversely related). Ratio between the number of spawners
 produced over a recruit's lifetime (given F) and the number of spawners produced without fishing (the
 closer to 100% the less exploitation permitted)
- R: analogous to SPR_{MER}. Position of the inflection point of population growth curves (assumed to be 0.5 in traditional production models): the closer to 1, the less exploitation permitted

Some life history strategies (how to cope with neonate and juvenile mortality)

Litter size	Offspring size	Body size	Growth	Lifespan	Example		
large	small	mid to large	mid to slow	substantial	Blue shark		
						,	
small	large	large	slow	high	Dusky shark		
small	small*	small to mid	fast	low to mid	Atlantic sharpnose shark		-
Smail	Small	Small to mid	1050		Additio sharphose shark	V =	
but born at	t high % of adult	maximum size	and reach ma	aturity quickl	у		
From Co	ortes (2000)						

